Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Численное дифференцирование и интегрирование. К численному дифференцированию приходиться прибегать в том случае, когда функция f(x), для которой нужно найти производную
К численному дифференцированию приходиться прибегать в том случае, когда функция f(x), для которой нужно найти производную, задана таблично или же функциональная зависимость f(x) имеет сложное аналитическое выражение. В этих случаях функция разбивается одномсерной сеткой и используются приближенные формулы. Формула первой производной для двух узлов: (4.4.1), , h-шаг изменения аргумента. Формула первой производной по трем узлам для второй точки: (4.4.2), где Формула второй производной для трех узлов: (4.4.3)
Численное интегрирование применяют в случаях когда нельзя найти формулу первообразной в элементарных функциях. Общий метод численного интегрирования сводится к замене интегрируемой площади подынтегральной функции на элементарные площади, получаемые разбиением с заданным шагом , где – квадратурная сумма, -коэффициенты, -узлы квадратурной функции. Формула прямоугольников. (4.4.4), где (k- число разбиений).
Иллюстрация метода прямоугольников.
Формула трапеций. (4.4.5) где h-шаг разбиения
|