![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Реактор идеального вытеснения
Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме (рис. 5.4). Каждый элемент потока, условно выделенный двумя плоскостями, перпендикулярными оси канала, движется через него как твердый поршень, вытесняя предыдущие элементы потока и не перемешиваясь ни с предыдущими, ни со следующими за ним элементами.
Рис. 5.4. Схема реактора идеального вытеснения
Естественно, что при проведении химической реакции, например реакции, в которой участвуют два или более реагентов, перемешивание участников реакции является необходимым условием ее осуществления, иначе невозможным будет контакт между разноименными молекулами, в результате которого и происходит элементарный акт реакции. Если в реакторе идеального смешения перемешивание носит глобальный характер и благодаря ему параметры процесса полностью выравниваются по объему аппарата, в реакторе идеального вытеснения перемешивание является локальным: оно происходит в каждом элементе потока, а между соседними по оси реактора элементами, как уже указывалось, перемешивания нет. Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущийся поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока; 3) в каждом отдельно взятом сечении, перпендикулярном оси потока, параметры процесса (концентрации, температуры и т. д.) полностью выравнены. Следует отметить, что строго эти допущения в реальных реакторах не выполняются. Из гидравлики известно, что даже в очень гладких каналах при движении потока, характеризующегося высокими числами Рейнольдса Re, у стенок канала существует так называемый пограничный вязкий подслой, в котором градиент линейной скорости очень велик. Сравнивая профили скоростей при различных потоках (рис. 5.5), видно, что максимально приблизиться к идеальному вытеснению можно лишь в развитом турбулентном режиме. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Рис. 5.5. Профили линейных скоростей потока при ламинарном (а), развитом турбулентном (б) и идеальном поршневом (в)режимах течения жидкости
Однако турбулентный поток характеризуется наличием нерегулярных пульсаций, носящих хаотичный характер, в результате чего некоторые частицы потока могут опережать основной поток или отставать от него, т. е. произойдет частичное перемешивание в осевом направлении. Конечно, абсолютные значения таких перемещений будут невелики по сравнению с основным осевым перемещением потока, и при больших линейных скоростях ими можно пренебречь. В то же время турбулентные пульсации в радиальном направлении будут способствовать локальному перемешиванию реагентов и выполнению третьего допущения. В реальном реакторе можно приблизиться к режиму идеального вытеснения, если реакционный поток – турбулентный и при этом длина канала существенно превышает его поперечный размер (например, для цилиндрических труб L/D > 20). В соответствии с принятыми допущениями общее уравнение материального баланса (4.7) для элементарного объема проточного реактора можно упростить. Прежде всего, в качестве элементарного объема в этом случае можно рассматривать объем, вырезанный двумя параллельными плоскостями, находящимися друг от друга на бесконечно малом расстоянии dz и перпендикулярными оси канала z (см. рис. 5.4). В этом элементарном объеме в соответствии с третьим допущением
Из уравнения (5.9) видно, что в нестационарном реакторе идеального вытеснения концентрация реагента реакции сJ является функцией двух переменных: координаты z и времени τ. При стационарном режиме уравнение будет еще более простым (в этом случае концентрация является только функцией координаты z):
В реакторе с постоянной площадью поперечного сечения канала линейная скорость потока uz будет величиной постоянной, равной отношению объемного расхода v к площади сечения F (uz= v/F). Тогда, с учетом того, что Fz/v = V/v = Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Следует еще раз обратить внимание на то, что величина Говоря о среднем времени пребывания Уравнение (5.11) для стационарного режима реактора идеального вытеснения можно проинтегрировать относительно
или, если J – исходный реагент,
Уравнения (5.12), (5.13) по виду напоминают уравнения (5.2), (5.3) для периодического реактора идеального смешения. Если считать, что элементарный объем dV, для которого составлялся материальный баланс, может двигаться вместе с потоком, в поршневом режиме он может рассматриваться как своеобразный периодический микрореактор идеального смешения, время проведения реакции в котором равно среднему времени пребывания реагентов в реакторе идеального вытеснения. Уравнения (5.12) и (5.13) могут быть использованы для расчета размеров изотермического реактора идеального вытеснения и глубины протекающего в нем процесса. 9.а Аммиак (от греч. hals ammoniakos, буквально - амонова соль, так назывался нашатырь, который получали близ храма бога Амона в Египте) NH3, бесцветный газ с резким запахом. Молекула имеет форму правильной пирамиды (см. рис. 1). Связи N—Н полярны; Рис. 1. Структура молекулы NH3 (длина связи - в нм). Твердый аммиак - бесцветные кристаллы с кубической решеткой (а = = 0, 515 нм, 2 = 4, пространственная группа Р213). В жидком аммиаке молекулы ассоциированы вплоть до критической температуры, электролитическая диссоциация совершенно ничтожна, произведение концентраций [NH; ][NH2] составляет 10-22 (-33, 4°С); Растворимость аммиака в воде (% по массе): 42, 8 (0°С, 33, 1 (20°С), 23, 4 (40°С), 14, 1 (60°С). Плотность водных растворов (г/см3): 0, 970 (8% по массе NH3), 0, 947 (16%), 0, 889 (32%), 0, 832 (50%), 0, 733 (75%). Для бесконечно разбавленного водного раствора В системе NH3—Н2О установлено существование эвтектик: лед + NН3*Н2О (33, 23% по массе NH3, т. пл. -100, 3оС), NH3*H2O + NH3*0, 5H2O (55, 11%, -83, 3°С), NH3*H2O + NH3 (80, 05%, - 92, 5°С). В водном растворе аммиак частично ионизирован на NH4+ и ОН, что обусловливает щелочную реакцию раствора (рКа 9, 247). Разложение аммиак на водород и азот становится заметным выше 1200-1300 °С, в присутствии катализаторов - выше 400°С. аммиак весьма реакционноспособен. Для него типичны реакции присоединения, в частности протон. при взаимодействия с кислотами. В результате образуются соли аммония, которые по многим свойствам подобны солям щелочных металлов. Аммиак - основание Льюиса, присоединяет не только Н+, но и другие акцепторы электронов, например BF3 с образованием BF3*NH3. Дает аммины при взаимодействии с солями. Щелочные и щелочноземельные металлы реагируют с жидким и газообразным аммиаком, давая амиды. При нагревании в атмосфере аммиака многие металлы и неметаллы (Zn, Cd, Fe, Cr, B, Si и др.) образуют нитриды. Жидкий аммиак взаимодействует с серой по реакции: 10S + 4NH3 -> 6H2S + N4S4. Около 1000°С аммиак реагирует с углем, образуя HCN и частично разлагаясь на N2 и Н2. Большое практическое значение имеет реакция аммиака с СО2, ведущая к образованию карбамата аммония NH2COONH4, который при 160-200 °С и давлении до 40 МПа распадается на воду и мочевину. Водород в аммиаке может быть замещен галогенами. Аммиак горит в атмосфере О2, образуя воду и N2. Каталитическим окислением аммиака получают NO – промежуточный продукт в производстве HNO3. Каталитическое окисление аммиака в смеси с СН4дает HCN. Такие сильные окислители, как Y2J2, K2Cr2J7и КМnО4, окисляют аммиак в водных растворах. Газообразный аммиак окисляется Вr2 и Сl2 до N2. Рис. 2. Зависимость равновесного содержания NH3 в газовой смеси (Н2: N2 = 3) от давления при разных температурах. Рис. 3. Агрегат синтеза аммиака мощностью 1360 т/сут: 1-компрессоры; 2-подогреватели; 3-а.пара. для тарирования сераорг. соед.; 4-адсорбер H2S; 5-трубчатая печь (первичный риформинг); 6-шахтный конвертор (вторичный риформинг); 7-паровые котлы; 8-конверторы СО; 9-абсорбер СО2; 10-кипятильник; 11 -регенератор раствора моноэтаноламина; 12-насос; 13-а.пара. для гидрирования остаточных СО и СО2; 14-воздушные холодильники; 15-конденсац. колонна; 16-испаритель жидкого NH3 (для охлаждения газа и выделения NH3); 17-колонна синтеза NН3; 18-водоподогреватель; 19-теплообменник; 20-сепаратор. Основной промышленный способ получения аммиака - по реакции 1/2N2 + 3/2H2 где w -наблюдаемая скорость процесса, равная разности скоростей образования и разложения A., kl и k2- константы скорости образования и разложения аммиак, рH2, pN2 и pNH3 -парциальное давление соответствующего газа, Рис. 4. Колонна синтеза аммиака: 1-люк для выгрузки катализатора; 2-центр, труба; 3-корпус; 4-люк для загрузки катализатора; 5 -теплообменник; 6-трубы для ввода холодного газа; 7 - катализатор. Аммиак выпускается в жидком виде либо в виде водного раствора - аммиачной воды, чаще всего с содержанием 25% NH3. аммиак, поставляемый на нужды промышленности, содержит не менее 99, 96% по массе NH3, до 0, 04% Н2О, до 2 мг/л машинного масла, до 1, 0 мг/л Fe. В технический аммиак, транспортируемый по трубопроводу, добавляется до 0, 2-0, 4% Н2О для ингибирования коррозии стали. Аммиак обнаруживается по характерному запаху. Бумажка, смоченная раствором Hg2(NO3)2, при действии аммиак чернеет. Малые количества аммиака в водных растворах открывают с помощью реактива Несслера. Количественно аммиак определяют титриметрически. Применяют аммиак в производстве HNO3, мочевины, NH4NO3, (NH4)2CO3, (NH4)2SO4 и др., аммофоса, уротропина, как жидкое удобрение, в качестве хладагента, Мировое производство аммиак составило в 1982 около 89 млн. т, в том числе в СССР 17, 76, США 14.06, СРР 3, 14, Франции 1, 9, Японии 2, 01, ФРГ 1, 92 млн. т. Жидкий аммиак хранят при 2, 0 МПа или при атм. давлении и — 33°С. Перевозят в стальных баллонах (окрашены в желтый цвет, имеют надпись " Аммиак" черного цвета), железнодорожных и автомобильных цистернах, по воде - в специальных танкерах, транспортируют также по трубопроводам. При содержании в воздухе 0, 5% по объему аммиак сильно раздражает слизистые оболочки. При остром отравлении поражаются глаза и дыхательные пути, при хронических отравлениях наблюдаются расстройство пищеварения, катар верхних дыхательных путей, ослабление слуха. Жидкий аммиак вызывает сильные ожоги кожи. ПДК 20 мг/м3. Смесь аммиак с воздухом взрывоопасна, КПВ 15-28%; для воздушно-аммиачных смесей, содержащих 9-57% по объему аммиак, т. всп. ок. 1000°С. Чистый аммиак был получен Дж. Пристли в 1774. Лит.: Малина И. К., Развитие исследований в области синтеза аммиака, М., 1973; Алексеев А. М. [и др.], " Ж. Всес. хим. о-ва им. Д.И.Менделеева", 1978, т. 23, [№] 1, с 31-38; Синтез аммиака, М., 1982; Жаворонков Н. М., Овчаренко Б. Г., Охотский С. М., в кн.: Развитие химической промышленности в СССР, т. 2, М., 1984, с. 7-37. См. также лит. при ст. Азот. Н.М. Жаворонков, Л. Д. Кузнецов.
|