![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Возникновение пламени
Возникновение пламени (воспламенение топлива) может произойти только после того, как будет достигнут необходимый контакт молекул топлива и окислителя. Любая реакция окисления протекает с выделением тепла. Вначале реакция окисления идет медленно с выделением малого количества тепла. Однако выделяющееся тепло способствует повышению температуры и ускорению реакции, что в свою очередь приводит к более энергичному выделению тепла, которое опять–таки оказывает благоприятное влияние на развитие реакции. Таким образом, происходит постепенное нарастание скорости реакции до момента воспламенения, после чего реакция идет с очень большой скоростью и носит лавинный характер. В реакциях окисления неразрывно связаны друг с другом механизм химической реакции и тепловые характеристики процесса окисления. Первичным фактором является химическая реакция и вторичным – выделение тепла. Оба эти явления тесно связаны между собой и влияют друг на друга. В практических условиях обычно прибегают к искусственному поджиганию топлива, вводя в зону горения определенное количество тепла, что приводит к резкому ускорению момента достижения воспламенения. В большинстве случаев выделение тепла при горении сопровождается потерями тепла в окружающую среду. Соотношения между выделяемым количеством тепла и теплом, передаваемым в окружающую среду, имеет большое значение для развития процесса воспламенения топлива. При стационарном состоянии процесса количество выделяющегося в единицу времени тепла должно быть равно количеству теряемого тепла. По мере окисления топлива значение температуры будет возрастать. И температура достигнет своего наибольшего значения, когда тепловыделение еще равно теплоотдаче. При дальнейшем увеличении тепловыделения начинается переход к резкому нестационарному выгоранию смеси, проходящему с бурным нарастанием температуры и скорости реакции, т. е. происходит тепловой взрыв. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Температура, при которой начинается нестационарный процесс выгорания смеси, называется температурой воспламенения. Таким образом, температура воспламенения не является физико-химической константой, определяемой только свойствами смеси, она определяется условиями протекания процесса, т. е. характером теплообмена с окружающей средой (температурой, формой сосуда и др.). Температуры воспламенения различных топлив приведены в таблице 2.
Таблица 2 – Температуры воспламенения в воздухе при атмосферном давлении
Кроме температуры, большое влияние на процесс зажигания топлива оказывает концентрация горючей составляющей в смеси. Существуют такие минимальная и максимальная концентрации горючей составляющей, ниже и выше которых вынужденное воспламенение произойти не может. Такие предельные концентрации называются концентрационными пределами воспламенения, значения их для некоторых газов приведены в таблице 3. Чтобы установить пределы воспламенения промышленных газов, которые являются смесью различных горючих компонентов, пользуются правилом Ле-Шателье, по которому
где Z - искомый нижний или верхний предел воспламенения, Z1, Z2, Z3 - соответствующие пределы воспламенения для горючих компонентов топлива, P1, P2, P3 – процентное содержание отдельных горючих компонентов в топливе.
Таблица 3 – Концентрационные пределы воспламенения, %
Негорючие составляющие газообразного топлива влияют на границы воспламенения, они повышают нижний и понижают верхний пределы воспламенения.
|