Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Взаимное пересечение поверхностей второго порядка. Особые случаи пересечения
Особый интерес представляет случай, когда она распадается на пару кривых второго порядка (плоских). Это происходит, если поверхности имеют двойное прикосновение, т.е. касаются друг друга в двух точках (рисунок 12-5). Признак касания поверхностей: если две поверхности в какой-либо общей для них точке имеют одну и ту же касательную плоскость (Г1 или Г2), то они касаются друг друга в этой точке. В нашем примере поверхности имеют двойное касание в точках А и В. Плоские кривые, на которые в этом случае распадается их линия пересечения, проходят через прямую, соединяющую точки прикосновения (доказательство Н.Ф. Четверухина). Следствием из положения о двойном прикосновении является следующее: если две поверхности второго порядка описаны около третьей поверхности второго порядка (или вписаны в неё), то линия их пересечения распадается на две плоские кривые второго порядка (рисунок 12-6). Это положение известно как теорема Гаспара Монжа.
|