Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Волновое число






Волново́ е число́ (также] называемое пространственной частотой) — это отношение 2 π радиан к длине волны: пространственный аналог круговой частоты

В одномерном случае волновому числу обычно приписывают знак минус, если волна распространяется в отрицательном направлении (против оси). В многомерном - это обычно синоним абсолютной величины волнового вектора или его компонент (несколько волновых чисел по количеству осей координат), также может быть проекцией волнового вектора на некоторое определенное выбранное направление.

Единица измерения — рад·м− 1, физическая размерность м− 1. (В системе СГС: см− 1).

§ В спектроскопии волновым числом часто называют просто величину, обратную длине волны (1/λ), измеряемую обычно в обратных сантиметрах (см− 1). Такое определение отличается от обычного отсутствием множителя 2 π.

Используется в физике, математике (преобразование Фурье) и таких приложениях, как обработка изображений.

Определение: волновым числом k называется скорость роста фазы волны φ по пространственной координате:

Поскольку в большинстве случаев волновое число имеет смысл только применительно к монохроматической волне (строго монохроматической или по крайней мере почти монохроматической), производную в определении можно (для этих самых распространенных случаев) заменить на выражение с конечными разностями:

Исходя из этого можно получить разные более-менее удобные формулировки:

§ Волновое число есть разность фазы волны (в радианах) в один и тот же момент времени в пространственных точках на расстоянии единицы длины (одного метра).

§ Волновое число есть количество пространственных периодов (горбов) волны, приходящееся на 1 метр.

§ Волновое число равно числу периодов волны, укладывающихся в отрезок 2 π метров.

§

§ где:

§ — λ — длина волны,

§ — (греческая буква «ню») — частота,

§ — φ — Фазовая скорость волны,

§ — ω — угловая частота.

§ Для монохроматической бегущей волны можно записать:

§

§ - для фазы,

§

§ - для самой волны,

§ или

§

§ - для комплексной волны; здесь может быть спрятано в ,

§ для монохроматической стоячей волны:

§

 

48. ЗАКОНЫ СОХРАНЕНИЯ, физические законы, согласно которым некоторое свойство замкнутой системы остается неизменным при каких-либо изменениях в системе. Самыми важными являются законы сохранения вещества и энергии. Закон сохранения вещества утверждает, что вещество не создается и не разрушается; при химических превращениях общая масса остается неизменной. Общее количество энергии в системе также остается неизменным; энергия только преобразуется из одной формы в другую. Оба эти закона верны лишь приблизительно. Масса и энергия могут превращаться одна в другую согласно уравнению Е = тс 2. Неизменным остается лишь общее количество массы и эквивалентной ей энергии. Еще один закон сохранения касается электрического заряда: его также нельзя создать и нельзя уничтожить. В применении к ядерным процессам закон сохранения выражается в том, что общая величина заряда, спин и другие КВАНТОВЫЕ ЧИСЛА взаимодействующих частиц должны остаться такими же у частиц, возникших в результате взаимодействия. При сильных взаимодействиях все квантовые числа сохраняются. При слабых взаимодействиях некоторые из требований этого закона нарушаются, особенно в отношении ЧЕТНОСТИ.

В теории волн уравнение непрерывности выражает собой закон сохранения энергии в элементарном объеме, в котором распространяются волны любой природы. Его дифференциальная форма

где — вектор плотности потока энергии в точке с координатами в момент времени , — плотность энергии.

Вывод

По определению, вектор плотности потока энергии — это вектор, модуль которого равен энергии, переносимой через единичную площадку, перпендикулярную направлению переноса энергии, за единицу времени, то есть , а направление его совпадает с направлением переноса энергии. Тогда энергия, вытекающая в единицу времени из некоторого макроскопического объема V,

 

По закону сохранения энергии , где — энергия, находящаяся в объеме V. По определению, плотность энергии — энергия единицы объема, тогда полная энергия, заключенная в данном объеме, равна

Тогда выражение для потока энергии примет вид

Применяя формулу Гаусса-Остроградского к левой части выражения, получим

В силу произвольности выбранного объема, заключаем что подынтегральные выражения равны, откуда и получаем дифференциальную форму уравнения непрерывности.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.