Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Лекция 3.3.Регулирование скорости трехфазного асинхронного двигателя изменением частоты напряжения питания






Частотное управление. У трехфазных асинхронных двигателей наиболее перспективным способом плавного регулирования является изменение частоты напряжения питания f (cм.(3.7)).При этом следует иметь в виду, что для наилучшего использования двигателя изменение частоты должно сопровождаться изменением амплитуды напряжения питания U. Объясняется это тем, что при неизменной амплитуде напряжения и регулировании частоты изменяется магнитный поток машины Фм=U/(4, 44fw1.эф). Уменьшение f вызовет увеличение Фм, что может привести к насыщению магнитопровода, резкому возрастанию намагничивающего тока и перегреву как стали, так и обмоток статора. Увеличение f приводит к уменьшению Фм, что при Мст=const вызовет рост тока в роторе и, соответственно, перегрев ротора при недоиспользовании стали.

Закон изменения напряжения зависит от изменения частоты питания и характера нагрузки. Например, если статический момент нагрузки Мстне зависит от скорости, то необходимо при регулировании частоты f так изменять напряжение U, чтобы

U /f = const. (3.8)

При этом в широком диапазоне сохраняется перегрузочная способность двигателя Мmax / Мном.

Частотный способ позволяет устанавливать угловую скорость выше и ниже номинальной. Увеличение угловой скорости допускается (в основном из условий механической прочности) в 1, 5-2 раза больше номинальной. Нижний предел скорости ограничен тем, что технически сложно получить источники питания с низкой частотой, а также добиться достаточно равномерного вращения ротора двигателя. В разомкнутом приводе частотный способ управления позволяет изменять угловую скорость в диапазоне D = (20 - 30): 1; в замкнутом приводе диапазон может быть существенно расширен с помощью обратных связей по скорости, току и напряжению.

Препятствием для широкого внедрения частотного способа является сложность и весьма высокая стоимость полупроводниковых преобразователей частоты. Схема и алгоритмы управления таким приводом получаются более сложными, чем приводом постоянного тока, так как управлять приходится сразу двумя взаимосвязанными величинами: частотой напряжения и магнитным потоком - при существенно нелинейных характеристиках.

Однако асинхронные двигатели с короткозамкнутым ротором благодаря отсутствию скользящего контакта являются более надежными и требуют меньше ухода в эксплуатации, чем коллекторные двигатели постоянного тока. При одинаковой мощности их стоимость в несколько раз меньше. Поэтому создание регулируемых асинхронных приводов с частотным управлением в целом ряде случаев является перспективным.

Система «Преобразователь частоты – трехфазный асинхронный двигатель»(ПЧ–АД). Силовые преобразователи частоты и амплитуды напряжения для частотного управления асинхронными двигателями выполняются в настоящее время на силовых полупроводниковых элементах. Преобразователи частоты можно разделить на две основные группы: преобразователи с промежуточным звеном постоянного тока и преобразователи с непосредственной связью первичной и вторичной цепей.

Широкое распространение получили преобразователи с промежуточным звеном постоянного тока (рис.3.6). В рассматриваемых преобразователях переменное напряжение питающей сети выпрямляется, фильтруется и подается на управляемый инвертор, который преобразует постоянное напряжение в переменное с регулируемой частотой. Выпрямители преобразователей в свою очередь могут быть управляемые и неуправляемые.

В преобразователе частоты (ПЧ) с управляемым выпрямителем УВ (рис. 3.6, а) напряжение U1~, подаваемое на двигатель АД, регулируется по амплитуде за счет изменения напряжения постоянного тока U? на выходе УВ. Управляемый выпрямитель преобразователей частоты по схеме и принципу действия не отличается от УВ, применяемых в электроприводе постоянного тока (см. Лекция 2.2).Управление работой выпрямителя и управляемого инвертора УИ осуществляет блок управления БУ.


Рисунок 3.6

Принцип действия управляемого инвертора рассмотрим на примере инвертора, выполненного по трехфазной мостовой схеме и работающего на чисто активную нагрузку (рис. 3.7, а). В управляемом инверторе силовыми элементами должны быть полностью управляемые полупроводниковые приборы, т.е. способные открываться и закрываться под воздействием соответствующих сигналов управления. Этому требованию отвечают либо транзисторы, работающие в ключевом режиме, либо тиристоры в совокупности со схемой искусственной коммутации (см. Лекция 2.3), либо запираемые тиристоры. В общем виде эти силовые элементы обозначены на рисунке как ключи К16. На вход УИ подано напряжение постоянного тока U, переключение в схеме происходит по команде блока управления каждую часть периода требуемой выходной частоты. При этом каждый ключ замкнут либо периода выходной частоты, либо периода. На рис. 3.7, б в качестве примера показаны временные диаграммы формирования выходного напряжения в фазах А, В, С сопротивления нагрузки Rн для первого случая.


Рисунок 3.7

Как видно, на каждом такте коммутации схемы одновременно проводят ток три ключа (во втором случае – два ключа). Например, на первом такте открыты ключи с номерами 1, 2, 3 и ток протекает по цепи, в которой последовательно с сопротивлением фазы С включены параллельно соединенные сопротивления фаз А и В. При этом в фазе С падает приложенного напряжения U, в фазах А и В – по U. Знак падения напряжения определяется направлением тока в фазе. За положительное падение напряжения принято такое, которое создается током, протекающим к общей точке фаз нагрузки. По мере переключения ключей напряжение в фазах ступенчато изменяется и на нагрузке формируется симметричная трехфазная система напряжений прямоугольно-ступенчатой формы. Первые гармоники этих напряжений требуемой частоты (пунктирные линии на рис. 3.6, б) имеют фазовый сдвиг 120°. Высшие гармоники могут быть отфильтрованы LC-фильтрами. Частота выходного напряжения определяется частотой коммутации ключей, порядок следования напряжений – порядком коммутации ключей.

При активной нагрузке, показанной на рис. 3.7, а, по закону изменения напряжения будут изменяться и токи. Однако обмотки статора асинхронного двигателя являются для инвертора активно-индуктивной нагрузкой и закон изменения выходного тока инвертора не будет совпадать с законом изменения напряжения. Это обстоятельство предъявляет определенные требования к схемам инверторов.

В преобразователе частоты с неуправляемым выпрямителем НВ (рис.3.6, б) выпрямленное напряжение преобразуется с помощью транзисторного широтно-импульсного модулятора (ШИМ) в импульсное напряжение на входе инвертора, частота импульсов должна быть значительно больше верхнего предела рабочей частоты на выходе инвертора.

При обычной широтно-импульсной модуляции каждый силовой ключ инвертора (рис.3.7, а) включается и отключается не один раз за такт формируемого выходного напряжения (рис.3.7, б), а несколько. Среднее значение напряжения на такте в режиме непрерывного тока (см.Лекция 2.3) примерно равно ε – относительной продолжительности импульсов ШИМ. Изменяя ε, можно регулировать значение напряжения U1~ на выходе инвертора. Способ близок по обеспечению синусоидальной формы выходного напряжения к системе УВ – АД, но лучше него по энергетическим характеристикам во всем диапазоне регулирования частоты и напряжения.

Более перспективным является синусный способ широтно-импульсного регулирования, который заключается в том, что длительность открытого состояния силовых ключей не остается постоянной в течение полупериода выходной частоты, а изменяется по синусоидальному закону. Если при этом частота переключения силовых ключей существенно выше выходной частоты инвертора, то в выходном напряжении кроме основной гармоники присутствуют лишь гармоники весьма высокого порядка, которые отфильтровываются индуктивностями обмоток самого двигателя.

Блок управления преобразователем частоты состоит из схемы управления выпрямителем, схемы управления инвертором и схемы совместного управления. Блок управления позволяет получать требуемые характеристики асинхронного электропривода при частотном управлении. Наиболее типичными законами автоматического управления являются:

1. Частотное управление, при котором изменение частоты сопровождается нелинейным изменением напряжения статора; в схеме управления требуется применение функционального преобразователя координат;

2. Частотно-токовое управление, при котором изменение частоты сопровождается нелинейным изменением тока статора; в схеме управления требуется применение функционального преобразователя координат;

3. Векторное управление, основанное на непосредственном контроле значения и положения магнитного потока в воздушном зазоре машины или положения ротора, а также мгновенных значений токов статора; в схеме управления требуется целый ряд блоков векторного преобразования координат.







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.