Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Density, stiffness, strength, ductility, toughness and creep resistance of metals






Density (specific weight) is the amount of mass in a unit volume. It is measured in kilograms per cubic metre. The density of water is 1000 kg/ m3 but most materials have a higher density and sink in water. Aluminium alloys, with typical densities around 2800 kg/ m3 are considerably less dense than steels, which have typical densities around 7800 kg/ m3. Density is important in any application where the material must not be heavy.

Stiffness (rigidity) is a measure of the resistance to deformation such as stretching or bending. The Young modulus is a measure of the resistance to simple stretching or compression. It is the ratio of the applied force per unit area (stress) to the fractional elastic deformation (strain). Stiffness is important when a rigid structure is to be made.

Strength is the force per unit area (stress) that a material can support without failing. The units are the same as those of stiffness, MN/m2, but in this case the deformation is irreversible. The yield strength is the stress at which a material first deforms plastically. For a metal the yield strength may be less than the fracture strength, which is the stress at which it breaks. Many materials have a higher strength in compression than in tension.

Ductility is the ability of a material to deform without breaking. One of the great advantages of metals is their ability to be formed into the shape that is needed, such as ear body parts. Materials that are not ductile are brittle. Ductile materials can absorb energy by deformation but brittle materials cannot.

Toughness is the resistance of a material to breaking when there is a crack in it. For a material of given toughness, the stress at which it will fail is inversely proportional to the square root of the size of the largest defect present. Toughness is different from strength: the toughest steels, for example, are different from the ones with highest tensile strength. Brittle materials have low toughness: glass can be broken along a chosen line by first scratching it with a diamond. Composites can be designed to have considerably greater toughness than their constituent materials. The example of a very tough composite is fiberglass that is very flexible and strong.

Creep resistance is the resistance to a gradual permanent change of shape, and it becomes especially important at higher temperatures. A successful research has been made in materials for machine parts that operate at high temperatures and under high tensile forces, without gradually extending, for example the parts of plane engines.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.