Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Моделирование наследственных и приобретенных заболеваний человека






Для разработки эффективных методов лечения наследственных и приобретенных заболеваний человека, а также для полного понимания их этиологии требуется моделирование соответствующих симптомов на лабораторных животных. В этом случае проблема заключается в направленном введении мутаций в гены организма животных, инактивация которых приводит к развитию патологических процессов. Разработка эффективных методов получения трансгенных животных позволила исследователям вплотную подойти к решению данного вопроса.

Основой для решения послужили две работы, выполненные М. Хупером и М. Куэном с соавторами и опубликованные в 1987 г. Авторам удалось разработать общий подход к избирательной инактивации генов в организме животных. Мишенью для инактивации стал ген гипоксантин-гуанозин-фосфорибозилтрансферазы (ГГФРТ), нефункциональное состояние которого у человека приводит к развитию заболевания Леша–Нихана. Мышей, дефектных по гену ГГФРТ, получали из эмбриональных стволовых клеток линии ES, инактивируя ген с помощью спонтанных мутаций или интегрируя в него геном ретровирусов (разновидность инсерционного мутагенеза). Клетки с инактивированным геном ГГФРТ удобно отделять от клеток дикого типа на селективной питательной среде в присутствии 6-тиогуанина. Позднее было показано, что инактивация гена ГГФРТ может быть достигнута путем гомологичной рекомбинации гена дикого типа с мутантным геном или его частью, которые вводят в клетки ES с помощью электропорации или микроинъекций в составе линеаризованных векторных плазмид. Основная проблема, возникающая при инактивации гена-мишени с помощью гомологичной рекомбинации, заключается в низкой частоте (~10-6) рекомбинационных событий, приводящих к правильной интеграции экзогенной последовательности нуклеотидов в инактивируемый ген. Эта проблема в настоящее время решается путем отбора требуемых мутантных клеток из общей популяции клеток, в которых интеграция инактивирующего вектора в хромосомы произошла случайным образом.

Рис. II.29. Схема адресной доставки генов в геном эмбриональных стволовых клеток с использованием гомологичной рекомбинации (" генный нокаут")

Показано положение гена устойчивости к неомицину (neo), интегрированного в экзон 2 инактивируемого гена, который используется для позитивного отбора, а также гена тимидинкиназы вируса простого герпеса (tk), используемого для негативной селекции клеток в присутствии ганцикловира

 

Чтобы создать селективные условия отбора, в последовательности нуклеотидов рекомбинантной ДНК, гомологичные последовательностям инактивируемого гена, вводят доминантный селектируемый маркер в виде гена устойчивости к антибиотикам (например neo), который экспрессируется только в случае правильной интеграции в ген-мишень под контроль его регуляторных элементов. Другая, более эффективная система отбора основана на одновременном проведении негативной и позитивной селекции клеток, у которых произошла правильная интеграция инактивирующего вектора. В этой системе помимо доминантного селектируемого маркера neo инактивирующий вектор содержит другой маркерный ген, экспрессия которого приводит к гибели клеток ES на селективной среде. Маркерным геном часто является ген тимидинкиназы вируса простого герпеса (HSV-tk), принцип действия которого был рассмотрен выше. Ген HSV-tk вводится в инактивирующий вектор таким образом, что он удаляется в результате гомологичной рекомбинации и сохраняется в хромосоме в случае неспецифической интеграции рекомбинантной ДНК, что приводит к цитотоксическому эффекту. Обобщенная схема направленного введения мутаций в гены животных in vivo, которые приводят к их инактивации во всех клетках трансгенного организма (" генный нокаут "), представлена на рис. II.29.

Разработка универсальных методов направленной инактивации любого требуемого гена во всех клетках организма трансгенных животных позволила за короткое время создать модели таких наследственных заболеваний человека, как b-талассемия, мышечная дистрофия Дюшенна, серповидно-клеточная анемия, муковисцидоз, болезнь Леша–Нихана и целого ряда других распространенных синдромов. Создание этих методов открыло также возможности генотерапии наследственных заболеваний путем замещения в клетках зародышевой линии мутантных аллелей на нормальные. Результаты, полученные в этой области, будут обсуждаться в разделе 10.5.

Следует подчеркнуть, что инактивация генов-мишеней у лабораторных животных – не единственный способ моделирования наследственных и особенно приобретенных заболеваний человека, поскольку причиной многих заболеваний является не отсутствие функционирования, а сверхэкспрессия определенных генов. Например, высокий уровень экспрессии трансгена аполипопротеина AII сопровождается развитием острого атеросклероза у трансгенных мышей. Только исчерпывающее знание этиологии заболевания допускает его адекватное моделирование, и, наоборот, лишь создание адекватных моделей может убедить исследователя в том, что он правильно понимает его природу.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.