Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уровни организации живых систем






Уровни организации живых систем представляют собой некую упорядоченность, иерархическую систему, которая является одним из основных свойств живого, см. табл. 1.

Таблица 1

Основная группа или ступень Уровень
Биологическая микросистема Молекулярный Клеточный
Биологическая мезосистема Тканевый Органный Организменный
Биологическая макросистема Популяционно-видовой Биоценотический Биосферный

Каждая живая система состоит из единиц подчиненных ей уровней организации и является единицей, входящей в состав живой системы, которой она подчинена. Например, организм состоит из клеток, являющихся живыми системами, и входит в состав недоорганизменных биосистем (популяций, биоценозов).

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня:

· характер клеточного уровня организации определяется молекулярным;

· характер организменного – клеточным;

· популяционно-видовой – организменным и т.д.

1. Молекулярный уровень. Молекулярный уровень несет отдельные, хотя и существенные признаки жизни. На этом уровне обнаруживается удивительное однообразие дискретных единиц. Основу всех животных, растений и вирусов составляют 20 аминокислот и 4 одинаковых оснований, входящих в состав молекул нуклеиновых кислот. У всех организмов биологическая энергия запасается в виде богатой энергией аденозинтрифосфорной кислоты (АТФ). Наследственная информация у всех заложена в молекулах дизоксирибонуклеиновой кислоты (ДНК), способной к саморепродукции. Реализация наследственной информации осуществляется при участии молекул рибонуклеиновой кислоты (РНК).

2. Клеточный уровень. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина протерозойской эры ~ 2000 млн. лет назад), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.

3. Тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих различающиеся между собой ткани. Большое сходство между всеми организмами сохраняется на тканевом уровне.

4. Органный уровень. Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. (Всего лишь шесть основных тканей входят в состав органов всех животных и шесть основных тканей образуют органы у растений).

5. Организменный уровень. На организменном уровне обнаруживается чрезвычайно большое многообразие форм. Разнообразие организмов, относящихся к разным видам, а также в пределах одного вида, объясняется не разнообразием дискретных единиц низшего порядка (клеток, тканей, органов), а усложнением их комбинаций, обеспечивающих качественные особенности организмов. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов растений. Каждый вид состоит из отдельных индивидуумов (организмы, особи), имеющих свои отличительные черты.

6. Популяционно-видовой уровень. Совокупность организмов одного вида, населяющих определенную территорию, составляет популяцию. Популяция – это недоорганизменная живая система, которая является элементарной единицей эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биоценозов.

7. Биоценотический уровень. Биогеоценозы – исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов.

8. Биосферный уровень. Совокупность биогеоценозов составляют: биосферу и обуславливают все процессы, протекающие в ней.

Таким образом, мы видим, что вопрос о структурных уровнях в биологии имеет некоторые особенности по сравнению с его рассмотрением в физике. Эта особенность состоит в том, что изучение каждого уровня организации в биологии ставит своей главной целью объяснение феномена жизни. Действительно, если в физике деление на структурные уровни материи в достаточной степени условно (критериями здесь являются масса и размеры), то уровни материи в биологии отличаются не столько размерами или уровнями сложности, но главным образом, закономерностями функционирования.

Действительно, если, например, исследователь изучил физико-химические свойства биологического объекта и его структуру, но не установил его биологического назначения в целостной системе, это будет означать, что изучен ещё один определенный объект, но не уровень живой материи.

Ещё одна особенность структуризации живой материи состоит в иерархической оподчиненности уровней. Это означает, что низшие уровни как единое целое входят в высшие. Эта концепция структуризации получила название «многоуровневой иерархической матрешки».

Важно отметить, также, что число выделяемых в биологии уровней зависит от глубины профессионального изучения мира живого.

14.4.Управление и регулирование в живых системах

Управление и регулирование – близкие понятия, однако, между ними есть определенная разница. Управление – функция организованных систем, обеспечивающая выполнение следующих задач:

· сохранение определенной структуры системы;

· поддержание режима деятельности системы;

· реализацию цели деятельности системы по определенному правилу (алгоритму).

Эти задачи решаются с помощью регулирования.

Регулирование – функция управляющих систем, обеспечивающая выполнение таких задач, как:

· поддержание постоянства регулируемой величины на некотором определенном уровне;

· изменение регулируемой величины по заданному закону (программное регулирование);

· изменение регулируемой величины в соответствии с ходом некоторого внешнего процесса (следящее регулирование).

Гомеостазис. В целом регулирование направлено на поддержание гомеостазиса – относительно динамического постоянства характеристик внутренней среды организма.

Гомеостазис обусловлен способностью живых систем вырабатывать реакции в ответ на изменение параметров внешней среды, которые исключают или сводят к минимуму последствия этих изменений.

Задачи управления в живой системе, таким образом, состоят в том, чтобы как можно эффективнее отвечать на изменения, происходящие во внешней и внутренней ее среде, то есть нейтрализовать возмущающие воздействия на систему. Живая система решает задачу управления путем своевременной перестройки своей структуры в соответствии с изменившимися условиями. Иными словами, процесс управления является процессом упорядочения системы в соответствии с изменениями во внешней и внутренней среде с целью противодействия факторам дезорганизации. Этот процесс осуществляется с помощью элементов, входящих в состав самой системы.

В живых системах управляющие факторы воздействуют на систему не извне, а возникают в ней самой. Поэтому управление в живых системах является самоуправлением, процессы регулирования – процессами саморегулирования, а сами живые системы являются самоорганизующимися системами. Здесь уместно дать еще одно определение самоорганизации.

Самоорганизация – процесс, в ходе которого создается, поддерживается или совершенствуется организация сложной системы. Свойства самоорганизации присущи всем живым системам: клеткам, организмам, популяциям, биогеоценозам. Процессы самоорганизации происходят за счет перестройки существующих и образования новых связей между элементами системы. В самоорганизующихся системах приспособление к изменяющимся условиям или улучшение процесса управления достигается изменением структуры системы управления: включением или отключением элементов системы, изменением связей между элементами и их подчиненностью, изменением алгоритмов управления.

Уровни управления. В организме существует несколько уровней управления.

Внутриклеточный механизм регуляции осуществляет биохимическую регуляцию в соответствии с генетической информацией, которая содержится на молекулярном уровне.

Механизм тканевой регуляци и– более высокий уровень регуляции, чем клеточный. Ткани взаимодействуют в рамках организма путем обмена определенными химическими веществами. Регулирует это взаимодействие еще один, более высокий уровень – железы внутренней секреции. Они вырабатывают гормоны, циркулирующие в крови, которые управляют организмом как целым.

Высший уровень регуляции – центральная нервная система, которая присутствует у всех много клеточных организмов. Она воздействует на все другие уровни регуляции.

Управление организмом имеет многоуровневый «иерархический» характер. На каждом уровне управление направлено на решение задач, присущих этому уровню. Чем выше уровень, тем более общие для системы задачи на нем решаются. Главная же цель, общая для живой системы в целом ставится и решается на высшем уровне управления. Цели и задачи нижележащих уровней носят вспомогательную роль по отношению к общей цели.

Основой для процессов управления и регуляции является обмен информацией благодаря наличию информационных связей. Рассмотрим подробнее информационные связи внутри организма.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.