Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Антифрикционные материалы




Антифрикционные материалы (от анти... и лат. frictio — трение), материалы, применяемые для деталей машин (подшипники, втулки и др.), работающих при трении скольжения и обладающих в определённых условиях низким коэффициентом трения. Отличаются низкой способностью к адгезии, хорошей прирабатываемостью, теплопроводностью и стабильностью свойств. В условиях гидродинамической смазки, когда детали (не деформирующиеся под влиянием давления в смазочном слое) полностью разделены сравнительно толстым слоем смазочного материала, свойства материала этих деталей не оказывают влияния на трение. Антифрикционность материалов проявляется в условиях несовершенной смазки (или при трении без смазки) и зависит от физических и химических свойств материала, к которым относятся: высокие теплопроводность и теплоёмкость; способность образовывать прочные граничные слои, уменьшающие трение; способность материала легко (упруго или пластически) деформироваться или изнашиваться, что способствует равномерному распределению нагрузки по поверхности соприкосновения (свойство прирабатываемости). К антифрикционности относятся также микрогеометрическое строение поверхности, а именно определённая степень шероховатости или пористости, при которых масло удерживается в углублениях, и способность материала "поглощать" твёрдые абразивные частицы, попавшие на поверхность трения, предохраняя тем самым от износа сопряжённую деталь. Проявлению антифрикционности в условиях сухого трения способствует наличие в материале таких компонентов, которые, сами обладая смазочным действием и присутствуя на поверхности трения, обеспечивают низкое трение (например, графит, дисульфид молибдена и др.). Одним из важных свойств А. м., обусловливающих антифрикционность при всех условиях трения, является его неспособность или малая способность к "схватыванию" (адгезии) с материалом сопряжённой детали. Наиболее склонны к "схватыванию" при трении одноимённые пластичные металлы в паре, имеющие гранецентрированную и объёмноцентрированную кубической решётки. При трении по стали наименее склонны к "схватыванию" серебро, олово, свинец, медь, кадмий, сурьма, висмут и сплавы на их основе.

Наиболее распространены как А. м. подшипниковые материалы (ПМ), применяемые для подшипников скольжения. Кроме антифрикционных свойств, они должны обладать необходимой прочностью, сопротивлением коррозии в среде смазки, технологичностью и экономичностью. Вследствие различия в требованиях к материалу подшипника, образующему поверхность трения (антифрикционность), и к остальной части подшипника (достаточная прочность) получили распространение ПМ и подшипники, у которых основа состоит из прочного конструкционного материала (например, стали), а поверхность трения — из слоя А. м. (например, баббита). А. м. наносится литейным способом на заготовку подшипника или на непрерывно движущуюся стальную ленту; из полученной биметаллической калиброванной ленты (см. Биметалл) подшипники (вкладыши и втулки) изготовляются штамповкой.



ПМ делятся на металлические и неметаллические. К металлическим ПМ относятся: сплавы на основе олова, свинца, меди, цинка, алюминия, а также некоторые чугуны; к неметаллическим ПМ — некоторые виды пластмасс, материалы на основе древесины, графито-угольные материалы, резина. Некоторые ПМ представляют собой сочетание металлов и пластмасс (например, пористый слой, образованный спечёнными бронзовыми шариками, пропитанный фторопластом-4 или фторопластом-4 с наполнителями).

ПМ на основе олова или свинца (баббиты) применяются в подшипниках в виде слоя, залитого по стали (иногда по бронзе). Прочное сцепление достигается специальной очисткой стали; возможна также наплавка баббита (для больших подшипников) и заливка им поверхности подшипника, имеющего углубления или пазы для лучшего сцепления. Подшипники автомобилей изготовляются штамповкой из биметаллической ленты стальбаббит.

ПМ на медной основе — бронзы оловянистые, оловянно-свинцовистые, свинцовистые, некоторые безоловянные, а также некоторые латуни. Для наиболее напряжённых подшипников двигателей внутреннего сгорания применяются свинцовистые пластичные бронзы (25% свинца и более) в виде тонкого слоя, залитого по стали.



ПМ на цинковой основе (см. Цинковые сплавы) служат заменителями бронзы, например сплав ЦАМ 9—1,5 применяется в подшипниках паровозов как для изготовления вкладышей целиком, так и для заливки по стали; известен также метод плакирования стали этим сплавом при производстве биметаллической ленты прокаткой.

ПМ на основе алюминия (см. Алюминиевые сплавы), широко применяемые для подшипников двигателей внутреннего сгорания, можно подразделить на 2 группы по степени пластичности (оцениваемой по твёрдости). По сравнению с баббитами пластичные алюминиевые сплавы обладают более высокой теплопроводностью и лучшими механическими свойствами при повышенных температурах; они гораздо дешевле, но хуже прирабатываются, менее способны "поглощать" твёрдые частицы и несколько сильнее изнашивают сопряжённый стальной вал. Их свойства улучшают нанесением на рабочую поверхность тонкого (25 мкм) слоя оловянно-свинцовистого сплава. Наиболее высокими антифрикционными свойствами обладает алюминиевый сплав с 20% олова, с микроструктурой, полученной в результате пластического деформирования и отжига. Сплавы с твёрдостью HB< 350Мн2 (35 кгс/мм2) применяют для производства путём совместной прокатки со сталью биметаллических лент или полос, из которых в последующем штампуют вкладыши подшипников. Сплавы с более высокой твёрдостью (HB = 450 Мн2,или 45 кгс/мм2) применяют для изготовления подшипников дизелей.

Серый перлитный чугун при определённой микроструктуре (перлит средне- или крупнопластинчатый, графит средней крупности, фосфидная эвтектика в виде изолированных включений) обладает антифрикционными свойствами и используется для подшипников, работающих при невысоких нагрузках и малых скоростях.

ПМ на основе пластмасс с наполнителями из ткани (текстолит) древесного шпона, древесной крошки с успехом применяют в подшипниках, обильно смачиваемых водой, при невысоких частотах вращения вала. Всё большее распространение как ПМ получают пластмассы (полиамиды, политетрафторэтилен и др.), работающие со смазкой маслом или водой. Полиамиды используют также в виде тонкого покрытия (например, 0,3 мм) по металлической основе подшипника, что повышает допустимую нагрузку. Режим работы подшипников из пластмасс ограничивается температурой на поверхности трения (например, для полиамидов не более 80—100°C). Особенность некоторых подшипников из полиамидов — почти полное отсутствие изнашивания сопряжённого стального вала. Наилучшей антифрикционностью по сравнению с другими пластмассами при малой скорости скольжения без смазки обладает Фторопласт-4, причём низкое трение сохраняется у него в широком интервале рабочих температур от —200°С до 260°C.

ПМ на основе древесины. В качестве ПМ в основном используют натуральную древесину и прессованную древесину, древеснослоистые пластики. Пример натурального ПМ — гваяковое или бакаутовое дерево, применяемое при смазке водой. ПМ на основе древесины используют при обильной смазке водой в подшипниках прокатных станов, водяных турбин, валов корабельных винтов.

Графито-угольные ПМ представляют собой продукты прессования и термической обработки смеси нефтяного кокса и каменноугольной смолы с небольшим количеством натурального графита. Применяются как ПМ для работы без смазки при невысоких удельных нагрузках, температуре до 480°С, в воздушной среде. Изготовляются также графито-угольные ПМ, пропитанные жидкими металлами или смолой.

Резину как ПМ используют при хорошей смазке водой, малых удельных нагрузках и небольших скоростях скольжения. Режим работы ограничивается температурой на поверхности трения 50—70 °С.

Металло-керамические самосмазывающиеся ПМ применяют в виде пористых втулок (главным образом малого размера, работающих при низких скоростях без подвода смазки извне). Изготовляются спеканием предварительно спрессованных заготовок из порошков оловянистой бронзы (10% Sn) с примесью графита или железа с графитом. Степень пористости — около 25%. Втулки пропитываются маслом.

АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ (от греч. anti- -приставка, обозначающая противодействие, и лат. frictio - трение), обладают низким коэф.трения

и применяются для изготовления деталей, работающих в условиях трения скольжения (подшипников, вкладышей, направляющих втулок и др.). Используют для работы в условиях сухого трения (в газах, воздухе, вакууме); с маловязкими жидкостями, не обладающими смазочными св-вами (вода, орг. р-рители, топлива); с жидкими или пластичными смазками на нефтяной или синтетич. основе.

Проявлению антифрикц. св-в в условиях сухого трения способствует наличие в материале компонентов, обладающих смазочным действием, напр. дихалькогенидов переходных металлов IV-VI групп, политетрафторэтилена (фторопласта-4), фторированного графита, высокомол. полиэтилена, гексагонального BN. Обычно их применяют в виде покрытий (со связующим или без него), добавок к смазочным маслам и различным антифрикционным материалам, предназначенным для работы без смазки или с маловязкими жидкостями.

Металлич. антифрикционные материалы обычно применяют с жидкими или пластичными смазочными материалами на нефтяной или синтетич. основе, в редких случаях-с растит. маслами и животными жирами. К таким антифрикционным материалам относятся: баббиты (сплавы на основе Sn и Рb), алюминиевые сплавы, бронзы, латуни, цинковые сплавы, чугуны, антифрикц. стали. наиб. прогрессивны антифрикционные материалы в виде биметаллич. лент или листов, состоящих из конструкционной (обычно стальной) основы и тонкого слоя антифрикционного материала (неск. десятых долей мм); такие материалы производятся на автоматич. линиях непрерывного действия. Подшипники (втулки, полувкладыши, подпятники и др.) производят простыми операциями штамповки с незначительной послед. мех. обработкой. Баббиты наносят на стальную ленту методом штамповки с незначительной послед. обработкой, бронзы - заливкой и методом порошковой металлургии (напеканием), алюминиевые сплавы - совместной прокаткой со сталью. Иногда на слой антифрикционного материала дополнительно наносят гальванич. способом тонкий "приработочный" слой мягкого металла (In, сплав Sn с Рb и др.), обладающего низким сопротивлением сдвигу, не вступающего в хим. взаимод. с материалом рабочего тела и образующего прочные оксидные и граничные слои из молекул ПАВ смазки, препятствующие проявлению адгезии. См. также Антифрикционные смазки.

Значит. распространение получили металлич. антифрикционные материалы, изготавливаемые методами порошковой металлургии (спеченные материалы): компактные, как правило, содержащие включения твердых смазочных материалов (графита, MoS2 и др.), и самосмазывающиеся пористые, пропитанные смазочными материалами (жидкими или пластичными). наиб. применение получили спеченные металлокерамич. материалы на основе Си и Fe.

Антифрикционные материалы на основе полимеров предназначены, как правило, для работы с жидкостями, не обладающими смазочными св-вами (водой и др.), а также без смазки, в т.ч. в вакууме. Основа полимерных антифрикционных материалов: термореактивные смолы-феноло-формальд., эпоксидные, эпоксикремнийорг., фурановые; термопласты-полиамиды, гомо- и сополимеры формальдегида (полиацетали), полиимиды,полиарилаты, поликарбонаты, фторполимеры, высокомол. полиэтилен. При смазке водой используют резины. Без смазки применяют материалы на основе фторопласта-4, а иногда полиэтилена высокого давления (они наз. антифрикционными самосмазывающимися пластмассами). Др.полимерам антифрикц. св-ва придаются введением MoS2, графита, BN, фторопластов, полиэтилена, жидких и пластичных смазок (нефтяных и синтетич.) и др. Для повышения физ.-мех. и триботехн. св-в в полимерные антифрикционные материалы вводят также наполнители: металлы исплавы

, оксиды, стекла, разл. модификации углерода, древесную крошку и шпон, др. полимеры и т.п. Часто используют наполнители в виде тканейиз природных, стеклянных, углеродных, металлич., синтетич. волокон, а также негканые материалы.

В кач-ве антифрикционных материалов используют также древесину твердых пород дерева (бакаут, самшит, бук), содержащую смолистые, обладающие смазочным действием в-ва. Менее ценные породы дерева модифицируют: уплотняют, пропитывают смазочными материалами,полимерами

, соед. металлов. Древесную крошку и шпон используют в кач-ве наполнителей в древесных пластиках.

Углеграфитовые антифрикционные материалы (обожженные и графитированные) применяют чаще всего без смазки. Для повышения прочности, износостойкости и теплостойкости их пропитывают металлами, сплавами, полимерами, солями. Разработаны материалы из углеродных волокон илитканей

в углеродной матрице.

Все большее применение получают комбинированные материалы, имеющие конструкц. основу и слой антифрикционного материала, состоящего из металлич. пористого каркаса, пустоты к-рого заполнены полимером с антифрикц. наполнителем. Типичный представитель - металлофторопластовый антифрикционный материал с бронзовым пористым слоем (на стальной основе), пустоты к-рого заполнены смесью фторопласта-4 с MoS2. Штампованные подшипники из этого антифрикционного материала широко применяют в узлах трения, работающих без смазки и при недостаточной смазке. Для работы со смазкой выпускается материал, поры к-рого заполнены сополимером формальдегида.

Другой тип комбинированных антифрикционных материалов - тканый. Состоят они из нитей фторопласта-4, сотканных вместе с волокнами из др. материалов (полимеров, металлов и др.) таким образом, что лицевая сторона получается преимущественно из волокон фторопласта-4, а обратная-из волокон второго материала.

 

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал