Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Гомо- и гетеродесмические структуры кристаллов. Структурные типы минералов.
Кристаллические структуры в К. делят на гомодесмические (координационные) и гетеродесмические. В первых все атомы объединены одинаковыми химическими связями, образующими пространственный каркас. Здесь нет группировок, которые можно было бы назвать молекулами. Гомодесмическую структуру имеют, например, алмаз, галогениды щелочных металлов. Однако гораздо чаще кристаллические вещества имеют гетеродесмическую структуру; её характерная черта — присутствие структурных фрагментов, внутри которых атомы соединены наиболее прочными (обычно ковалентными) связями. Эти фрагменты могут представлять собой конечные группировки атомов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органические соединения и такие неорганические вещества, как галогены, O2, N2, CO2, N2O4 и др. Роль «островов» играют молекулы, поэтому такие кристаллы называются молекулярными. Часто в качестве «островов» выступают многоатомные ионы (например, сульфаты, нитраты, карбонаты). Цепочечное строение имеют, например, кристаллы одной из модификаций Se (атомы связаны в бесконечные спирали) или кристаллы PdCl2, в которых присутствуют бесконечные ленты. СТРУКТУ́ РНЫЕ ТИ́ ПЫ КРИСТА́ ЛЛОВ, неорганических соединений, закономерное пространственное расположение атомов, ионов (иногда молекул), составляющих кристаллические вещества. Расшифровка структуры кристаллов — одна из основных задач кристаллографии. Основными методами исследования кристаллических структур являются рентгеновский структурный анализ, нейтронография, электронография. Кристалл с определенной химической формулой имеет присущую ему кристаллическую структуру, обладающую трехмерной периодичностью — кристаллической решеткой. Структура кристалла — это конкретное расположение частиц в пространстве. В большинстве неорганических соединений имеет место взаимное проникновение бесконечных укладок из катионов и анионов. Геометрическое описание конкретной кристаллической структуры состоит в указании координат центров атомов в элементарной ячейке кристалла, что позволяет определять межатомные расстояния и изучать геометрические особенности кристаллической структуры. Задача классификации - одна из основных задач кристаллохимии на современном этапе. В настоящее время выделено уже более тысячи структурных типов, однако они охватывают лишь несколько процентов известных кристаллических структур. Понятие структурный тип — один из критериев сходства или различия строения кристаллов. Обычно структурный тип относят к названию одного из веществ, кристаллизующихся в нём. Структуры кристаллов, принадлежащих к одному структурному типу, одинаковы до подобия. Структурный тип в кристаллографии определяет относительное расположение частиц (атомов или атомных групп) в кристалле, без указаний абсолютных расстояний между ними. Чтобы описать конкретную структуру, надо указать структурный тип и параметры структуры. К важнейшим и распространенным структурным типам относятся: структура меди (тип А), структура вольфрама (тип А 2), структура магния (тип А 3), структура алмаза (тип А 4), структура графита (тип А 9), структура каменной соли (тип В 1), структура перовскита (тип Е 2), структура шпинели (тип Н 11). Структура меди В структурном типе меди кристаллизуются очень многие металлы: золото, серебро, никель, алюминий, кальций, торий, свинец и др. Все эти металлы сравнительно мягкие, пластичные, легко обрабатываются. Многие из них образуют непрерывные ряды твердых растворов, например, Ag-Au, Cu-Au. Структурой типа меди обладают также интерметаллические соединения AuSb, Au2Bi, Au2Pb, Cu2Mg, Bi2K, ZrH, TiH и др. Элементарная ячейка меди — кубическая, гранецентрированная. Атомы располагаются в вершинах и центрах граней F –ячейки. На элементарную ячейку приходится 4 атома. Каждый атом окружен 12 ближайшими атомами, координационное число (к.ч.) =12. Координационный многогранник – кубооктаэдр. В структуре имеется одна правильная система точек с кратностью 4. Плотнейшие слои 1 перпендикулярны направлениям. Плотнейшая упаковка кубическая трехслойная ….АВСАВС….Пространственная группа Fm3m. Структура магния В структурном типе магния кристаллизуются гексагональные металлы: кадмий, бериллий, таллий, титан, никель, хром и др. Эта структура также характерна для интерметаллических соединений AgCd, AgCd3, AuCd, AuCd3, CuCd3, AgZn3, AuZn3, NiMo, TiH, W2С и др. Элементарная ячейка магния — элементарная примитивная. Центры атомов располагаются по вершинам правильных шестиугольников: в трех вершинах — через одну, — атомы верхнего слоя, в трех других вершинах — атомы нижнего слоя. Элементарная ячейка построена на трех трансляциях, две из которых лежат в плотно упакованном слое атомов и составляют между собой угол = 120о, третья перпендикулярна этому слою. Элементарную ячейку можно разделить плоскостью на две тригональные призмы. В центре одной из призм расположен атом, другая свободна, заселенные и пустые призмы чередуются между собой. На элементарную ячейку приходится два атома магния. Каждый атом магния окружен двенадцатью ближайшими атомами: шестью — в том же слое, тремя в соседнем слое сверху и тремя в соседнем слое снизу, к.ч.=12. Плотные слои — плоскости базиса (0001), упаковка гексагональная, двухслойная ….АВАВАВАВ…. Кристаллы металлов с плотно упакованной гексагональной структурой легче всего деформируются по плоскостям (0001) и направлениям, соответствующим наиболее плотной упаковке атомов. Координационный многогранник — гексагональный кубооктаэдр. Пространственная группа магния Р63/mmc. Структура вольфрама К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы: хром, ванадий, молибден, ниобий, тантал, -кобальт, -железо, титан, цирконий, гафний, щелочные элементы — литий, натрий, калий, рубидий, цезий, щелочноземельные — кальций, стронций, барий, актиниды — уран, нептуний, плутоний. Из интерметаллических соединений в ОЦК-структуре кристаллизуются AgZn, Cu3Al, CoAl, Cu5Sn, LiAg, LiAl, TaH и др. В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0, 68. Пространственная группа вольфрама Im3m. Структура каменной соли В структуре галита кристаллизируются почти все галогениды щелочных металлов (LiF, LiCI, NaF, RbF, RbCI.), кроме галогенидов цезия, и окислы щелочноземельных элементов (MgO, CaO и др.). Структурой типа NaCl обладают также оксиды переходных элементов TiO, MnO, FeO, NiO, нитриды и карбиды переходных подгрупп Ti и V, галоиды серебра AgCl, AgBr, AgF, сульфиды и селениды свинца и теллура. В структуре NaCl кристаллизуются полупроводниковые соединения группы AIVBVI (GeTe, SnTe, PbS, PbSe, PbTe). Структуру типа NaCl можно описать как две кубические гранецентрированные решетки, сдвинутые одна относительно другой так, что узел одной ячейки совпадает с узлом 1 другой ячейки. Структура NaCl характеризуется гранецентрированной F- ячейкой Браве. В структурном типе галита NaCI и катионы, и анионы расположены по закону кубической плотнейшей упаковки. Каждый ион натрия окружен шестью ионами хлора, а каждый ион хлора окружен шестью ионами натрия. Координационное число к.ч. NaCl = к.ч. ClNa =6. координационный многогранник – октаэдр. Пространственная группа Fm3m. Структура алмаза В структурном типе алмаза кристаллизуются важнейшие элементарные полупроводники — германий, кремний, серое олово. Тип ячейки Браве — гранецентрированная кубическая (ГЦК). Атомы углерода занимают все узлы ГЦК-ячейки, а также центры половины октантов, на которые можно разбить куб, причем заполненные и незаполненные октанты чередуются в шахматном порядке. Это выглядит так, как если бы в элементарную ГЦК-ячейку вдвинули вторую такую же ячейку, так, что узел одной ячейки совпадает с узлом 4144 другой ячейки. Каждый атом окружен четырьмя такими же атомами, располагающимися по вершинам тетраэдра. Расположение атомов таково, что каждый из них окружен четырьмя равноотстоящими ближайшими атомами, к.ч. = 4, к.м. — тетраэдр. На одну элементарную ячейку приходится восемь атомов. Все атомы относятся к одной правильной системе точек. Ковалентные связи направлены вдоль направления. Коэффициент компактности решетки алмаза равен 0, 34, т. е. вдвое меньше, чем у ОЦК. Междоузлия представляют собой тетраэдрические пустоты. Радиус сферы, вписанный в междоузлия велик и близок к радиусу атома 0, 885Rат. Такая рыхлость решетки, обусловленная направленностью связей, существенно сказывается на особенностях образования точечных дефектов, растворимости и диффузии примесей в алмазоподобных полупроводниках. Пространственная группа структуры алмаза Fd3m. Структура графита Графит — гексагональная модификация углерода. Структура графита слоистая, причем каждый из чередующихся слоев (0001) построен по одному и тому же закону из гексагональных ячеек. Каждый слой смещен по отношению к двум соседним, точно повторяющим друг друга, на половину большой диагонали гексагона. Структура двухслойная с чередованием слоев, ….АВАВАВ… Каждый из слоев состоит из гексагональных ячеек. Под незаполненным слоем одного гексагона лежит вершина гексагона следующего слоя. Третий слой повторяет первый. В элементарной ячейке содержатся четыре атома. В структуре графита есть две правильные системы точек с кратностью 2. Пространственная группа структуры графита P63/mmc. В кристаллах со слоистой структурой очень сильно различие физических свойств вдоль и поперек главной оси симметрии. Структура сфалерита и вюрцита Сульфид цинка ZnS кристаллизуется в виде кубического сфалерита (цинковой обманки) или гексагонального вюрцита. Такие структуры характерны для многих полупроводниковых кристаллов AIIIBV (GaAs, InAs, GaP, lnP, InSb, AlN, BN и др.), AIIBVI (CdS, CdSe, ZnSe, HgSe, CdTe, ZnTe, HgTe). Структура сфалерита относится к гексатетраэдрическому классу кубической сингонии. По расположению атомов в пространстве она подобна структуре алмаза, однако из-за наличия атомов двух сортов не содержит центра инверсии. Это гранецентрированная кубическая решетка, в которой заселена половина тетраэдрических пустот. В сфалерите атомы одного сорта (например, серы) занимают узлы ГЦК-ячейки, а атомы другого (например, цинка) — центры четырех октантов. Структуру сфалерита можно описать как две ГЦК-решетки — серы и цинка, смещенные друг относительно друга на четверть диагонали кубической ячейки, или как плотнейшую упаковку ионов серы, смещенную на такое же расстояние от аналогичной упаковки ионов цинка. Атомы цинка и серы находятся во взаимозаменяемых положениях и образуют две правильные системы точек, каждая имеет кратность 4. В структуре сфалерита ряд кристаллографических плоскостей и направлений полярен. Поверхности А 1 и В в алмазоподобных полупроводниковых фазах характеризуются различными поверхностными химическими связями. Возможные простые формы — куб, ромбический додекаэдр и тетраэдр. Пространственная группа сфалерита Fm. Этот структурный тип характерен для соединений с ковалентными связями; в нём кристаллизируются также CuCI, Cul, HgS. Структура вюрцита — гексагональная. Гексагональная призма составлена из шести элементарных тригональных призм. Ионы одного элемента располагаются в вершинах гексагональной призмы, в центрах ее базисных граней и в центрах трех тригональных призм, а ионы второго элемента — в тех же трех тригональных призмах и на всех вертикальных ребрах гексагональной призмы. Плотнейшая упаковка в структуре вюрцита образована параллельными слоями анионов. Каждый анион окружен анионами. Катионы находятся между четырьмя анионами на равных расстояниях от них, заполняя половину тетраэдрических пустот. Пространственная группа структуры 6mm, ось 6 – полярное, единичное направление. Поэтому в кристаллах со структурой вюрцита анизотропия свойств выражена сильнее, чем в сфалерите. Структура перовскита Структура типа перовскита CaTiO3 и изоморфных ему соединений BaTiO3, CaZrO3, PbTiO3 характерна для многих сегнетоэлектрических кристаллов. Структура типа перовскита характерна для высокотемпературной параэлектрической фазы обширного семейства соединений АВХ3 в тех случаях, когда размеры иона В позволяют ему разместиться в октаэдрах из ионов Х, а большой катион А по своим размерам близок к ионам Х. В элементарной ячейке перовскита ионы титана занимают вершины, ионы кислорода помещаются в серединах ребер, а ион кальция — внутри ячейки. Несмотря на то, что внутри ячейки имеется ион, решетка не объемно-центрированная, а примитивная, трансляций внутри объема нет, ион кальция принадлежит ячейке целиком. В структуре имеются три правильные системы точек: титана с кратностью 1, кальция с кратностью 1, кислорода с кратностью 3. Ионы титана связываются друг с другом трансляциями a, b, c, ионы кислорода — плоскостями зеркального отражения. В структуре перовскита на 4N шаров плотнейшей упаковки (1 ион кальция и 3 иона кислорода) приходится N катионов титана, которые располагаются в октаэдрических пустотах между кислородно-титановыми октаэдрами. Пространственная группа Pm3m. Структура шпинели Структура шпинели MgAl2O4 характерна для соединений типа X2+2Y2+2O2-4, где X и Y — катионы, из которых хотя бы один элемент принадлежит к группе переходных элементов, O — кислород (известны также шпинели, в которых анионами являются F-, Cl-, CN-, S-2, Se-2, Te-2). В обычных шпинелях катион X является двухвалентым (Mg2+, Mn2+, Fe2+, Ni2+, Zn2+), катион Y — трехвалентным (Al3+, V3+, Cr3+, Mn3+). Структура шпинели характерна для ферритов. Кристалл шпинели имеет ГЦК-решетку, в узлах которой расположены анионы, образующие плотнейшую кубическую трехслойную упаковку. Катионы расположены в междоузлиях, заполняя их частично. Элементарная ячейка шпинели – куб с удвоенным ребром: она состоит из 8 катионов X, 16 катионов Y и 32 анионов, т.е. на элементарную ячейку приходится восемь формульных единиц. Каждый анион окружен одним X- и тремя Y-катионами. В структуре шпинели имеются две различные катионные подрешетки: тетраэдрическая или А-подрешетка, и октаэдрическая, или В-подрешетка. Координационное число аниона в решетке шпинели равно 12, координационное число катиона в тетраэдрическом положении 4, в октаэдрическом положении 6. Катионное распределение по подрешеткам А и В определяется типом химических связей, которые возникают между атомами катионов и атомами кислорода, т.е. природой катиона. Существуют разновидности структуры шпинели: нормальные и обращенные. В нормальных шпинелях катионы Х2+ занимают тетраэдрические А-, а катионы Y3+ октаэдрические В-междоузлия, так что общая формула X2+Y3+2O2-4, в обращенных шпинелях октаэдрические междоузлия заняты двумя сортами катионов: все катионы Х2+ занимают В-положения, половина катионов Y3+ тоже находится в В-положениях, а вторая половина — в А-положениях, так что общая формула будет X4+4Y2+2O2-4. К обращенным шпинелям относятся MgFe2O4, CoFe2O4, Fe3O4(Fe.Fe2O4), NiFe2O4. Существует ряд шпинелей, промежуточный между нормальными и обращенными. Пространственная группа для структуры шпинелей Fd3m.
|