Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Ш – шпалопрокатные заводы.
Ч – часы карманные, которые показывали не только время суток, но и месяц, день, неделю, время года, фазы Луны, время восхода и заката Солнца (И.Кулибин). Э – электродвигатель (Б.Якоби); электрическая лампа накаливания (А.Лодыгин); Теперь мне хотелось бы спросить вас, уважаемые читатели, много ли из приведенных примеров вы знали? Возможно, составленная азбука не полная. Но даже те факты, которые удалось найти, вызывают у меня восхищение перед российскими гениями науки и техники. Здесь каждая «буква» могла бы стать предметом национальной гордости любого народа, но только не нашего. Как можно гордиться тем, про что никто не знает. Например, в 1990 году в издательстве «Современник» была выпущена двухтомная книга «От машин до роботов». В ней приводились примеры развития техники с упоминанием отечественных изобретателей и учёных. Следующая книга подобной тематики увидела свет только в 2000 году (»Самые знаменитые изобретатели России» – изд. «Вече», г.Москва. – Прим.Авт). Целых десять(!) лет ни одно российское издание не обращало внимания на книги о русских изобретателях и изобретениях. А зачем? Если нет государственного заказа на развитие этой темы. История показывает, что из всех русских изобретателей повезло только Кулибину – его государство поддерживало. Все остальные постоянно испытывали финансовые трудности, им отказывали в патентовании, их изобретениям предпочитали пролоббированные иностранные экземпляры гораздо худшего качества. И, к сожалению, ситуация не изменилась. Для справки: сегодня доля внедренных российских разработок в мировом отношении составляет всего 0, 3% от мировых; в США – 36%. Почувствуйте разницу! Так, на благодатной почве финансового благополучия Запада прорастают идеи, рожденные в умах наших ученых.
РАДИОЭЛЕКТРОНИКА Начало развития радиотелефонии положено А.С. Поповым. В 1898 г. им был сконструирован радиоприёмник, в котором радиосигналы принимались на телефон. Это открытие создало возможность широкого применения радио в военном деле. Начал Попов с воспроизведения опытов Герца, он затем использовал более надежный и чувствительный способ регистрации электромагнитных волн. В качестве детали, непосредственно “чувствующей” электромагнитные волны, А.С. Попов применил когерер (от лат. - “когеренция” - “сцепление”). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Срабатывало реле, включался звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками ослабевало, и они были готовы принять следующий сигнал. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема. Хотя современные радиоприемники очень мало напоминают приемник А.С. Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов. 7мая 1895г. на заседании Русского физико-химического общества в Петербурге А. С.Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая стал днем рождения радио. Ныне он ежегодно отмечается в нашей стране. А. С. Попов продолжал настойчиво совершенствовать приемную аппаратуру. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния. Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона. В начале 1900г. радиосвязь была успешно использована во время спасательных работ в Финляндском заливе. При участии А. С. Попова началось внедрение радиосвязи на флоте и в армии России. Продолжая опыты и совершенствуя приборы, А. С. Попов медленно, но уверенно увеличивал дальность действия радиосвязи. Через 5 лет после постройки первого приемника начала действовать регулярная линия беспроволочной связи на расстоянии 40 км. благодаря радиограмме, переданной по этой линии зимой 1900г., ледокол “Ермак” снял со льдины рыбаков, которых шторм унес в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX в. За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони. Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан. Первая в мире практическая линия радиосвязи была установлена также А.С. Поповым в начале 1900 г. между островом Гогланд и портом Котка на расстоянии около 46 км. В 1908 г. русские ученные М.В. Шулейкин, А.А. Петров, М.Н. Циклинский, В.П. Вологдин, И.Г. Фрейман и др. создали в Петербурге Радиотелеграфное депо морского ведомства, вокруг которого группировались научные работники и инженеры, которое в дальнейшем послужило основой для создания и развития радиопромышленности в России.
МЕДИЦИНА Уже давно прошло время, когда врач был вынужден лишь по внешним признакам разгадывать болезнь, надеясь только на свои органы чувств. К этому наука прибавила теперь многое. При помощи удивительных приборов и аппаратов, различными методами химического и физического анализа врач может проникнуть не только в тайны деятельности того или иного органа и системы в здоровом и больном организме, но и разгадать, как живет и действует клетка, какие процессы совершаются в ней на молекулярном уровне. Благодаря новым лекарственным средствам он может настигнуть микроба в любой часу организма, уничтожить самую мельчайшую форму жизни – вирус. Врач может регулировать обмен веществ в организме, повышать сопротивляемость своего пациента в борьбе с болезнями и даже существенно влиять на функции мозга. Благодаря тому, что современная медицина опирается в своем развитии на другие отрасли естествознания и, в частности, на биологию, физиологию, биохимию, генетику, физику, электронику и инженерное дело, она с каждым годом делается все могущественнее и постепенно обретает полную власть над человеческим организмом. В этом содружестве медицины с другими отраслями знания и состоит важнейшая сторона современного этапа ее развития. Медицинская наука так разрослась, она настолько раздвинула свои возможности, что теперь ни одна отрасль промышленности, сельского хозяйства, строительства, транспорта, связи, космических исследований, воспитания детей и многое другое не может обходиться без ее советов и непосредственного участия. У хирургии сердца своя большая история, в которую вплетены имена выдающихся врачей разных стран - Норвегии, ГДР, ФРГ, СССР, Англии, Италии, Франции, Швеции, Дании и других. Хирургия сердца обязана многими своими успехами советским ученым. На - зовем имена академика А. Н. Бакулева, профессоров А. А. Вишневского, П. А. Куприянова, Б. В. Петровского, Е. Н. Мещалкина, достигших значительных успехов в этой области. А. Н. Бакулев еще в 1948 году, когда операции на сердце только начинались, впервые в СССР произвел хирургическое вмешательство при врожденном пороке сердца, а потом и при пороке клапанов сердца. Он внедрил в широкую практику операции на сердце и явился создателем Института по хирургии сердца и сосудов - одного из крупнейших учреждений подобного типа в мире. А. А. Вишневский сумел настолько разработать технику местного обезболивания, что провел, используя этот метод, операцию на сердце. Еще в 1957 году он впервые в СССР сделал операцию с помощью аппарата " искусственное сердце и легкие", созданного советскими инженерами. Им и его учеником Донецким разработан метод соединения сосудов при операции на сердце с помощью специальных колец с кривыми шипами, что дает возможность быстро сшивать сосуды без игл и нитей. Хирургу Е. Н. Мешалкину впервые удалось произвести разработанную по предложению академика А. Н. Бакулева в Институте хирургии доктором Н. К. Галанкиным операцию соединения верхней полой вены с легочной артерией, что применяется при тяжелом врожденном пороке сердца у детей, так называемой " синей" болезни. Хотя эта операция не устраняет полностью порока, но улучшает кровообращение, дает возможность крови обогащаться кислородом в легких (что затруднено при этом заболевании) и тем значительно облегчает состояние ребенка, который начинает более или менее нормально развиваться. Б. В. Петровский прославился на весь мир операциями по поводу аневризмы сердца. Аневризма представляет собой мешкообразное выпячивание (или расширение) стенки артерии или сердца, возникающее в одних случаях из-за повреждения, в других - при размягчении участка стенки сосуда или сердца. У больного, которого оперировал Б. В. Петровский, в прошлом был инфаркт миокарда. На месте бывшего инфаркта стенка сердца с течением времени стала податливой и под давлением крови в конце концов выпятилась. Такая аневризма может в любое время разорваться, что неминуемо приводит к мгновенной смерти. Вот почему эти мешки, заполненные кровью, следует по возможности оперировать. На сердце такого еще не делал никто. Петровский вырезал мешетчатое расширение и зашил это место с помощью аппарата. П. А. Куприянов был одним из первых, кто вскоре после окончания второй мировой войны стал заниматься хирургией сердца. Он впервые применил охлаждение организма при операциях на сердце. Из англичан следует упомянуть Суттара, который много лет назад, в 1925 году, сделал попытку оперировать клапан сердца. Профессора Дрю, У. Клилапд, Д. Мелроуз - ведущие в этой стране специалисты в хирургии сердца. В ФРГ- большие специалисты профессора Ценкер в Мюнхене и Е. Дерра в Дюссельдорфе, в ГДР - профессор М. Гербст. Во всем мире широко известны имена выдающихся сердечных хирургов итальянцев П. Вальдони и А. Доглиотти, французов Д'Аллена и Ч. Дюбоста, шведов Е. Краффорда и В. Бьёрка, датчанина Е. Хусфельда и многих других. Все они внесли неоценимый вклад в развитие науки - хирургии сердца, и все они - русские, французы, англичане, итальянцы, шведы, датчане, немцы и другие - все они герои медицины. Но все эти хирурги знают, как они далеки, несмотря на достигнутые результаты, от окончательного разрешения проблемы хирургии сердца и как много еще предстоит поработать, чтобы излечивать любые болезни сердца или заменять его. Но они - оптимисты, они верят в конечный успех. Они учат своих помощников, растят новых специалистов, которые понесут вперед знамя науки и разовьют успех учителей. В середине XX века шведскими учеными был изобретен электрический стимулятор сердца, который мог поддерживать жизнь умирающему сердцу. В этом маленьком аппарате было расположено в ряд несколько батарей с долгим сроком службы. Такой набор батарей обеспечивает работу по меньшей мере в течение трех лет. А что потом, по истечении этих трех лет? Это не трудная проблема, так как аппарат пришивается под кожей и необходимо лишь небольшое вмешательство, чтобы извлечь стимулятор из его ложа и заменить новым, который будет работать столько же, а возможно и дольше, так как за это время электротехника, несомненно, сделает успехи. Первая операция по внедрению электростимулятора под кожу больного была проведена в декабре 1961 года.
ХИМИЯ Великий русский ученый Дмитрий Иванович Менделеев открыл так называемый периодический закон химических элементов, согласно которому все химические элементы определённым образом связаны между собой. Это было величайшее открытие одного из основных законов естествознания. Мысль о химическом сродстве элементов, которая пришла еще в годы студенчества, опять волновала его. Он был абсолютно твердо убежден, что непременно должен существовать некий закон - властный, неумолимый, который и определяет это сродство или различие элементов, населяющих мир. Сколько до него было попыток - наивных, надуманных - найти этот закон, повинуясь ему, расставить все элементы по стройной системе... В то время химики открыли и «обмерили» 64 элемента, знали их атомные веса, так что уже был материал для работы. Не было только человека, который сумел бы проникнуть в эту тайну, лежащую, как казалось, где-то неподалеку и тем не менее недосягаемую. Французский химик Шанкуртуа искал закономерность, расположив элементы по винтовой нарезке, нанесенной на стоящий цилиндр. Все напрасно. Английский химик Ньюлендс, человек, вероятно, утонченной натуры, напряженно искал разгадку с помощью музыки. Он верил, что те соотношения, которые существуют между элементами, похожи на соотношения между музыкальным тоном и его октавой. Ньюлендс построил-таки свою систему, искусственно впихивая в нее элементы, подстругивая их под те размеры, которые сам же и уготовил. Система была, но системы элементов не было. Ньюлендсу пришлось пережить пренеприятные минуты, когда председатель британского съезда естествоиспытателей спросил его, не пряча иронии: «Не пробовал ли уважаемый джентльмен расположить элементы по алфавиту и не усмотрел ли он при этом каких-либо закономерностей?» Менделеев смотрел в самую суть явлений и не пытался искать какую-то внешнюю связь, объединяющую все элементы в фундаменте мироздания. Он пытался понять - что их связывает и что определяет их свойства. Менделеев расположил элементы по возрастанию их атомного веса и стал нащупывать закономерность между атомным весом и другими химическими свойствами элементов. Он пытался понять способность элементов присоединять к себе атомы сородичей или отдавать свои. Он вооружился ворохом визитных карточек и написал на одной стороне название элемента, а на другой - его атомный вес и формулы его некоторых важнейших соединений. Он снова и снова перекладывал эти карточки, укладывая их по свойствам элементов. И в его сознании всплывали какие-то новые закономерности, и он со знакомым волнением, предшествующим открытию, осторожно продвигался дальше и дальше. Часами он сидел, склонившись над своим столом, снова и снова вглядываясь в записи, и ощущал, как начинала кружиться от напряжения голова и как глаза застилала дрожащая пелена... Говорят, что во сне к нему пришло озарение и что ночью ему привиделось, как, в каком порядке надо разложить те карточки, чтобы все легло по своим местам по закону природы. Может быть. Мозг человека всегда бодрствует. Но шел-то Менделеев к этому прозрению годами! Он продвигался осмысленно, заранее намечая и рассчитывая каждый свой очередной шаг. Может, и было то озарение, но его нельзя назвать случайным. Менделеев нашел связь даже между самыми непохожими элементами. Он обнаружил, что свойства элементов, если их разместить в порядке возрастания атомных весов, через правильные промежутки повторяются. Менделеев понимал: случайностью это быть не могло. Тогда он сделал последний – решающий шаг: расположил все элементы еще и по группам, объединив в отдельные семьи ближайших родственников. Он настолько ясно видел стройность созданной им системы, что, заметив отсутствие элемента между алюминием и титаном, оставил ему свободное место. Таких пустых клеток пришлось оставить еще две. Система Менделеева позволяла ему предвидеть открытие. Первое из них последовало через четыре года. Элемент, для которого Менделеев оставил место и свойства, атомный вес которого он предсказал, вдруг объявился! Его звали Лекок де Буабодран. Менделеев предсказал, еще оставляя для этого элемента место, что его плотность должна быть 5, 9. А Буабодран утверждал: открытый им элемент имеет плотность 4, 7. Менделеев, и в глаза-то не видевший новый элемент -тем это и удивительней, - заявил, что французский химик ошибся в расчетах. Но и Буабодран оказался упрямцем: он уверял, что был точен. Этот спор походил на какую-то игру, в которой участвовал магпрорицатель. Этот маг носил русское имя. Чуть позже после дополнительных измерений выяснилось: Менделеев был безоговорочно прав. Первый элемент, заполнивший пустое место в таблице, Буабодран назвал галлием в честь своей родины Франции. И никому тогда не пришло в голову дать ему имя человека, который предсказал существование этого элемента, человека, который раз и навсегда предопределил путь развития химии. Это сделали ученые двадцатого века. Имя Менделеева носит элемент, открытый советскими физиками. Также именно Менделеев изобрел так называемый «пироколлодий» - порох.
|