Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Introduction to cloud technology






 

Definitions of cloud is defined by many expert, but the National Institute of Standards and Technology (NIST) definition is a generally accepted standard: “Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (such as networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”4 More simply, a cloud can be considered to be a collection of hardware, software and other resources that can be accessed over the Internet, and used to assemble a solution on demand (that is, at the time of the request) to provide a set of services back to the requester.

Many practitioners in the commercial and academic spheres have attempted to define exactly what “cloud computing” is and what unique characteristics it presents. Buyya et al. [9] have defined it as follows: “Cloud is a parallel and distributed computing system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers.” Vaquero et al. [10] have stated “clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized Service Level Agreements.”

While there are countless other definitions, there seems to be common characteristics between the most notable ones listed above, which a cloud should have: (i) pay-per-use (no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of infinite resources; (iii) self-service interface; and (iv) resources that are abstracted or virtualized.

In addition to raw computing and storage, cloud computing providers usually offer a broad range of software services. They also include APIs and development tools that allow developers to build seamlessly scalable applications upon their services. The ultimate goal is allowing customers to run their everyday IT infrastructure “in the cloud.” A lot of hype has surrounded the cloud computing area in its infancy, often considered the most significant switch in the IT world since the advent of the Internet [12]. In midst of such hype, a great deal of confusion arises when trying to define what cloud computing is and which computing infrastructures can be termed as “clouds.” Indeed, the long-held dream of delivering computing as a utility has been realized with the advent of cloud computing [11].

However, over the years, several technologies have matured and significantly contributed to make cloud computing viable. In this direction, this introduction tracks the roots of cloud computing by surveying the main technological advancements that significantly contributed to the advent of this emerging field. It also explains concepts and developments by categorizing and comparing the most relevant R& D efforts in cloud computing, especially public clouds, management tools, and development frameworks. The most significant practical cloud computing realizations are listed, with special focus on architectural aspects and innovative technical features.

Figure 1.1 - Convergence of various advances leading to the advent of cloud computing

 

This model brings benefits to both consumers and providers of IT services. Consumers can attain reduction on IT-related costs by choosing to obtain cheaper services from external providers as opposed to heavily investing on IT infrastructure and personnel hiring. The “on-demand” component of this model allows consumers to adapt their IT usage to rapidly increasing or unpredictable computing needs. Providers of IT services achieve better operational costs; hardware and software infrastructures are built to provide multiple solutions and serve many users, thus increasing efficiency and ultimately leading to faster return on investment (ROI) as well as lower total cost of ownership (TCO).

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.