Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Условные обозначения. АЛУ – арифметико-логическое устройство.

АЛУ – арифметико-логическое устройство.

АСУ – автоматизированные системы управления.

АЦП – аналого-цифровые преобразователи.

БИС – большая интегральная схема.

ВЗУ – внешнее запоминающее устройство.

ЗУ – запоминающее устройство.

ИПС – информационно-поисковые системы.

НЖМД – накопитель на жестких магнитных дисках.

ОЗУ – оперативное запоминающее устройство.

ОП – оперативная память.

ОС – операционная система.

ПЗУ – постоянное запоминающее устройство.

ПК – персональные компьютеры.

ППО – прикладное программное обеспечение.

ППП – пакет прикладных программ.

САПР – система автоматизированного проектирования.

СУБД – система управления базами данных.

УУ – устройство управления.

ЦП – центральный процессор.

ЦАП – цифроаналоговые преобразователи.

ЭВМ – электронно-вычислительные машины.

 


Тема 1

Общие теоретические основы информатики

1.1. Понятие информатики

Информатика(от фр. information –информация + automatique –автоматика) обладает широчайшим диапазоном применения. Основными направлениями этой научной дисциплины являются:

•разработка вычислительных систем и программного обеспечения;

•теория информации, которая изучает процессы, основанные на передаче, приеме, преобразовании и хранении информации;

•методы, которые позволяют создавать программы для решения задач, требующих определенных интеллектуальных усилий при использовании их человеком (логический вывод, понимание речи, визуальное восприятие и др.);

•системный анализ, состоящий в изучении назначения проектируемой системы и в определении требований, которым она должна соответствовать;

•методы анимации, машинной графики, средства мультимедиа;

•телекоммуникационные средства (глобальные компьютерные сети);

•различные приложения, которые используются в производстве, науке, образовании, медицине, торговле, сельском хозяйстве и др.

Чаще всего считают, что информатика состоит из двух видов средств:

1) технических – аппаратуры компьютеров;

2) программных – всего разнообразия существующих компьютерных программ.

Иногда выделяют еще одну основную ветвь – алгоритмические средства.

В современном мире роль информатики огромна. Она охватывает не только сферу материального производства, но и интеллектуальную, духовную стороны жизни. Увеличение объемов производства компьютерной техники, развитие информационных сетей, появление новых информационных технологий значительно влияют на все сферы общества: производство, науку, образование, медицину, культуру и т. д.

1.2. Понятие информации

Слово «информация» в переводе с латинского означает сведения, разъяснения, изложение.

Информацией называются сведения об объектах и явлениях окружающего мира, их свойствах, характеристиках и состоянии, воспринимаемые информационными системами. Информация является характеристикой не сообщения, а соотношения между сообщением и его анализатором. Если отсутствует потребитель, хотя бы потенциальный, говорить об информации не имеет смысла.

В информатике под информацией понимают некоторую последовательность символических обозначений (букв, цифр, образов и звуков и т. п.), которые несут смысловую нагрузку и представлены в понятном для компьютера виде. Подобный новый символ в такой последовательности символов увеличивает информационный объем сообщения.

1.3. Система кодирования информации

Кодирование информации применяют для унификации формы представления данных, которые относятся к различным типам, в целях автоматизации работы с информацией.

Кодирование –это выражение данных одного типа через данные другого типа. Например, естественные человеческие языки можно рассматривать как системы кодирования понятий для выражения мыслей посредством речи, к тому же и азбуки представляют собой системы кодирования компонентов языка с помощью графических символов.

В вычислительной технике применяется двоичное кодирование. Основой этой системы кодирования является представление данных через последовательность двух знаков: 0 и 1. Данные знаки называются двоичными цифрами(binary digit), или сокращенно bit(бит). Одним битом могут быть закодированы два понятия: 0 или 1 (да или нет, истина или ложь и т. п.). Двумя битами возможно выразить четыре различных понятия, а тремя – закодировать восемь различных значений.

Наименьшая единица кодирования информации в вычислительной технике после бита – байт. Его связь с битом отражает следующее отношение: 1 байт = 8 бит = 1 символ.

Обычно одним байтом кодируется один символ текстовой информации. Исходя из этого для текстовых документов размер в байтах соответствует лексическому объему в символах.

Более крупной единицей кодирования информации служит килобайт, связанный с байтом следующим соотношением: 1 Кб = 1024 байт.

Другими, более крупными, единицами кодирования информации являются символы, полученные с помощью добавления префиксов мега (Мб), гига (Гб), тера (Тб):

1 Мб = 1 048 580 байт;

1 Гб = 10 737 740 000 байт;

1 Тб = 1024 Гб.

Для кодирования двоичным кодом целого числа следует взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, которая записывается справа налево вместе с последним частным, и будет являться двоичным аналогом десятичного числа.

В процессе кодирования целых чисел от 0 до 255 достаточно использовать 8 разрядов двоичного кода (8 бит). Применение 16 бит позволяет закодировать целые числа от 0 до 65 535, а с помощью 24 бит – более 16, 5 млн различных значений.

Для того чтобы закодировать действительные числа, применяют 80-разрядное кодирование. В этом случае число предварительно преобразовывают в нормализованную форму, например:

2, 1427926 = 0, 21427926 * 10;

500 000 = 0, 5 * 10.

Первая часть закодированного числа носит название мантиссы, а вторая часть – характеристики. Основная часть из 80 бит отводится для хранения мантиссы, и некоторое фиксированное число разрядов отводится для хранения характеристики.

1.4. Кодирование текстовой информации

Текстовую информацию кодируют двоичным кодом через обозначение каждого символа алфавита определенным целым числом. С помощью восьми двоичных разрядов возможно закодировать 256 различных символов. Данного количества символов достаточно для выражения всех символов английского и русского алфавитов.

В первые годы развития компьютерной техники трудности кодирования текстовой информации были вызваны отсутствием необходимых стандартов кодирования. В настоящее время, напротив, существующие трудности связаны с множеством одновременно действующих и зачастую противоречивых стандартов.

Для английского языка, который является неофициальным международным средством общения, эти трудности были решены. Институт стандартизации США выработал и ввел в обращение систему кодирования ASCII (AmericanStandard Code for Information Interchange – стандартный код информационного обмена США).

Для кодировки русского алфавита были разработаны несколько вариантов кодировок:

1) Windows-1251 – введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение;

2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях на территории Российской Федерации и в российском секторе Интернет;

3) ISO (International Standard Organization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко.

Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной –UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков.

Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки очень долго не мог осуществиться из-за недостатков ресурсов средств вычислительной техники, так как в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше. В конце 1990-х гг. технические средства достигли необходимого уровня, начался постепенный перевод документов и программных средств на систему кодирования UNICODE.

1.5. Кодирование графической информации

Существует несколько способов кодирования графической информации.

При рассмотрении черно-белого графического изображения с помощью увеличительного стекла заметно, что в его состав входит несколько мельчайших точек, образующих характерный узор (или растр). Линейные координаты и индивидуальные свойства каждой из точек изображения можно выразить с помощью целых чисел, поэтому способ растрового кодирования базируется на использовании двоичного кода представления графических данных. Общеизвестным стандартом считается приведение черно-белых иллюстраций в форме комбинации точек с 256 градациями серого цвета, т. е. для кодирования яркости любой точки необходимы 8-разрядные двоичные числа.

В основу кодирования цветных графических изображений положен принцип разложения произвольного цвета на основные составляющие, в качестве которых применяются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). На практике принимается, что любой цвет, который воспринимает человеческий глаз, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB (по первым буквам основных цветов). При применении 24 двоичных разрядов для кодирования цветной графики такой режим носит название полноцветного(True Color).

Каждый из основных цветов сопоставляется с цветом, дополняющим основной цвет до белого. Для любого из основных цветов дополнительным будет являться цвет, который образован суммой пары остальных основных цветов. Соответственно среди дополнительных цветов можно выделить голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Принцип разложения произвольного цвета на составляющие компоненты используется не только для основных цветов, но и для дополнительных, т. е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Этот метод кодирования цвета применяется в полиграфии, но там используется еще и четвертая краска – черная (Black), поэтому эта система кодирования обозначается четырьмя буквами – CMYK. Для представления цветной графики в этой системе применяется 32 двоичных разряда. Данный режим также носит название полно цветного.

При уменьшении количества двоичных разрядов, применяемых для кодирования цвета каждой точки, сокращается объем данных, но заметно уменьшается диапазон кодируемых цветов. Кодирование цветной графики 16-разрядными двоичными числами носит название режима High Color. При кодировании графической цветной информации с применением 8 бит данных можно передать только 256 оттенков. Данный метод кодирования цвета называется индексным.

1.6. Кодирование звуковой информации

В настоящий момент не существует единой стандартной системы кодирования звуковой информации, так как приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации самыми последними. Поэтому множество различных компаний, которые работают в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Но среди этих корпоративных стандартов выделяются два основных направления.

В основе метода FM(Frequency Modulation) положено утверждение о том, что теоретически любой сложный звук может быть представлен в виде разложения на последовательность простейших гармонических сигналов разных частот. Каждый из этих гармонических сигналов представляет собой правильную синусоиду и поэтому может быть описан числовыми параметрами или закодирован. Звуковые сигналы образуют непрерывный спектр, т. е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняется с помощью специальных устройств – аналого-цифровых преобразователей(АЦП). Обратное преобразование, которое необходимо для воспроизведения звука, закодированного числовым кодом, производится с помощью цифроаналоговых преобразователей(ЦАП). Из-за таких преобразований звуковых сигналов возникают потери информации, которые связаны с методом кодирования, поэтому качество звукозаписи с помощью метода FM обычно получается недостаточно удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окраской, характерной для электронной музыки. При этом данный метод обеспечивает вполне компактный код, поэтому он широко использовался в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.

Основная идея метода таблично-волнового синтеза(Wave-Table) состоит в том, что в заранее подготовленных таблицах находятся образцы звуков для множества различных музыкальных инструментов. Данные звуковые образцы носят название сэмплов. Числовые коды, которые заложены в сэмпле, выражают такие его характеристики, как тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые компоненты среды, в которой наблюдается звучание, и другие параметры, характеризующие особенности звучания. Поскольку для образцов применяются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к звучанию реальных музыкальных инструментов, что в большей степени соответствует нынешнему уровню развития современной компьютерной техники.

 

1.7. Режимы и методы передачи информации

Для корректного обмена данными между узлами локальной вычислительной сети используют определенные режимы передачи информации:

1) симплексная (однонаправленная) передача;

2) полудуплексная передача, при которой прием и передача информации источником и приемником осуществляются поочередно;

3) дуплексная передача, при которой производится параллельная одновременная передача, т. е. каждая станция одновременно передает и принимает данные.

В информационных системах очень часто применяется дуплексная или последовательная передача данных. Выделяют синхронный и асинхронный методы последовательной передачи данных.

Синхронный методотличается тем, что данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока посылают биты синхронизации. После этого передаются данные, код обнаружения ошибки и символ, обозначающий окончание передачи. Эта последовательность образует стандартную схему передачи данных при синхронном методе. В случае синхронной передачи данные передаются и в виде символов, и как поток битов. Кодом обнаружения ошибки чаще всего является циклический избыточный код обнаружения ошибок (CRC), который определяется по содержимому поля данных. С его помощью можно однозначно определить достоверность принятой информации.

К преимуществам метода синхронной передачи данных относят:

•высокую эффективность;

•надежный встроенный механизм обнаружения ошибок;

•высокую скорость передачи данных.

Основным недостатком этого метода является дорогое интерфейсное оборудование.

Асинхронный методотличается тем, что каждый символ передается отдельной посылкой. Стартовые биты предупреждают приемник о начале передачи, после чего передается сам символ. Для определения достоверности передачи применяется бит четности. Бит четности равен единице, когда количество единиц в символе нечетно, и нулю, когда их количество четное. Последний бит, который называется «стоп-битом», сигнализирует об окончании передачи. Эта последовательность образует стандартную схему передачи данных при асинхронном методе.

Преимуществами метода асинхронной передачи являются:

•недорогое (по сравнению с синхронным) интерфейсное оборудование;

•несложная отработанная система передачи.

К недостаткам этогометода относят:

•потери третьей части пропускной способности на передачу служебных битов;

•невысокую скорость передачи по сравнению с синхронным методом;

•невозможность определить достоверность полученной информации с помощью бита четности при множественной ошибке.

Метод асинхронной передачи используется в системах, в которых обмен данными происходит время от времени и не требуется высокая скорость их передачи.

 

1.8. Информационные технологии

Информация является одним из ценнейших ресурсов общества, поэтому процесс ее переработки, также каки материальных ресурсов (например, нефти, газа, полезных ископаемых и др.), можно воспринимать как своего рода технологию. В данном случае будут справедливы следующие определения.

Информационные ресурсы –это совокупность данных, представляющих ценность для предприятия (организации) и выступающих в качестве материальных ресурсов. К ним относятся тексты, знания, файлы с данными и т. д.

Информационные технологии –это совокупность методов, производственных процессов и программно-технических средств, которые объединены в технологическую цепочку. Эта цепочка обеспечивает сбор, хранение, обработку, вывод и распространение информации с целью снижения трудоемкости при использовании информационных ресурсов, а также повышения их надежности и оперативности.

По определению, принятому ЮНЕСКО, информационной технологией являетсясовокупность взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, которые заняты обработкой и хранением информации, а также вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием.

Система методов и производственных процессов определяет приемы, принципы и мероприятия, регламентирующие проектирование и использование программно-технических средств для обработки данных. В зависимости от конкретных прикладных задач, требующих решения, применяют различные методы обработки данных и технические средства. Выделяют три класса информационных технологий, позволяющих работать с различного рода предметными областями:

1) глобальные, включающие в себя модели, методы и средства, формализующие и позволяющие использовать информационные ресурсы общества в целом;

2) базовые, предназначенные для определенной области применения;

3) конкретные, реализующие обработку определенных данных при решении функциональных задач пользователя (в частности, задач планирования, учета, анализа и т. д.).

Основной целью информационной технологии является производство и обработка информации для ее анализа и принятия на его основе соответствующего решения, которое предусматривает выполнение какого-либо действия.

 

1.9. Этапы развития информационных технологий

Существует несколько точек зрения на процесс развития информационных технологий с применением компьютеров. Этапизацию осуществляют на основе следующих признаков деления.

Выделение этапов по проблемам процесса информатизации общества:

1) до конца 1960-х гг. – проблема обработки больших объемов информации в условиях ограниченных возможностей аппаратных средств;

2) до конца 1970-х гг. – отставание программного обеспечения от уровня развития аппаратных средств;

3) с начала 1980-х гг. – проблемы максимального удовлетворения потребностей пользователя и создания соответствующего интерфейса работы в компьютерной среде;

4) с начала 1990-х гг. – выработка соглашения и установление стандартов, протоколов для компьютерной связи, организация доступа к стратегической информации и др.

Выделение этапов по преимуществу, приносимому компьютерной технологией:

1) с начала 1960-х гг. – эффективная обработка информации при выполнении рутинной работы с ориентацией на централизованное коллективное использование ресурсов вычислительных центров;

2) с середины 1970-х гг. – появление персональных компьютеров (ПК). При этом изменился подход к созданию информационных систем – ориентация смещается в сторону индивидуального пользователя для поддержки принимаемых им решений. Применяется как централизованная, так и децентрализованная обработка данных;

3) с начала 1990-х гг. – развитие телекоммуникационной технологии распределенной обработки информации. Информационные системы используются для помощи организации в борьбе с конкурентами.

Выделение этапов по видам инструментария технологии:

1) до второй половины XIX в. – «ручная» информационная технология, инструментами при котором были перо, чернильница, бумага;

2) с конца XIX в. – «механическая» технология, инструментарий которой составляли пишущая машинка, телефон, диктофон, почта;

3) 1940—1960-е гг. XX в. – «электрическая» технология, инструментарий которой составляли большие электронно-вычислительные машины (ЭВМ) и соответствующее программное обеспечение, электрические пишущие машинки, ксероксы, портативные диктофоны;

4) с начала 1970-х гг. – «электронная» технология, основным инструментарием являются большие ЭВМ и создаваемые на их базе автоматизированные системы управления (АСУ) и информационно-поисковые системы (ИПС), которые оснащены широким спектром программных комплексов;

5) с середины 1980-х гг. – «компьютерная» технология, основной инструментарий – ПК с широким спектром стандартных программных продуктов разного назначения.

 

1.10. Появление компьютеров и компьютерных технологий

Многие столетия люди пытаются создать различные приспособления для облегчения вычислений. В истории развития компьютеров и компьютерных технологий выделяются несколько важных событий, которые стали определяющими в дальнейшей эволюции.

В 40-е гг. XVII в. Б. Паскаль изобрел механическое устройство, с помощью которого можно было выполнять сложение чисел.

В конце XVIII в. Г. Лейбниц создал механическое устройство, предназначенное для сложения и умножения чисел.

В 1946 г. были изобретены первые универсальные ЭВМ. Американские ученые Дж. фон Нейман, Г. Голдстайн и А. Берне опубликовали работу, в которой представили основные принципы создания универсальной ЭВМ. Начиная с конца 1940-х гг. стали появляться первые опытные образцы таких машин, условно называемых ЭВМ первого поколения. Эти ЭВМ изготавливались на электронных лампах и по производительности отставали от современных калькуляторов.

В дальнейшем развитии ЭВМ выделяют следующие этапы:

•второе поколение ЭВМ – изобретение транзисторов;

•третье поколение ЭВМ – создание интегральных схем;

•четвертое поколение ЭВМ – появление микропроцессоров (1971 г.).

Первые микропроцессоры выпускались компанией Intel, что и привело к появлению нового поколения ПК. Вследствие возникшего в обществе массового интереса к таким компьютерам компания IBM(International Business Machines Corporation) разработала новый проект по их созданию, а фирма Microsoft –программное обеспечение для данного компьютера. Проект завершился в августе 1981 г., и новый ПК стал называться IBM PC.

Разработанная модель компьютера стала очень популярна и быстро вытеснила с рынка все прежние модели компании IBMв последующие несколько лет. С изобретением компьютера IBM PC начался выпуск стандартных IBM PC-совместимых компьютеров, которые составляют большую часть современного рынка ПК.

Кроме IBM PC-совместимых компьютеров существуют и другие разновидности ЭВМ, предназначенные для решения задач разной сложности в различных сферах человеческой деятельности.

 

1.11. Эволюция развития персональных компьютеров

Развитие микроэлектроники привело к появлению микроминиатюрных интегральных электронных элементов, пришедших на смену полупроводниковым диодам и транзисторам и ставших основой для развития и использования ПК. Эти компьютеры имели ряд достоинств: были компактны, просты в применении и относительно дешевы.

В 1971 г. компания Intelсоздала микропроцессор i4004, а в 1974 г. – i8080, оказавший огромное влияние на развитие микропроцессорной техники. Данная компания по сей день остается лидером на рынке производства микропроцессоров для ПК.

Вначале ПК разрабатывались на базе 8-разрядных микропроцессоров. Одним из первых производителей компьютеров с 16-разрядным микропроцессором стала компания IBM, до 1980-х гг. специализировавшаяся на производстве больших ЭВМ. В 1981 г. она впервые выпустила ПК, в котором использовался принцип открытой архитектуры, позволивший изменить конфигурацию компьютера и улучшить его свойства.

В конце 1970-х гг. и другие крупные компании ведущих стран (США, Японии и т. д.) приступили к разработке ПК на базе 16-разрядных микропроцессоров.

В 1984 г. появился TIKMacintoshфирмы Apple –конкурента компании IBM.В середине 1980-х гг. были выпущены компьютеры на базе 32-разрядных микропроцессоров. В настоящее время имеются 64-разрядные системы.

По виду значений основных параметров и с учетом применения выделяют следующие группы средств вычислительной техники:

•суперЭВМ – уникальная сверхпроизводительная система, используемая при решении сложнейших задач, при больших вычислениях;

•сервер – компьютер, предоставляющий собственные ресурсы другим пользователям; существуют файловые серверы, серверы печати, серверы баз данных и др.;

•персональный компьютер – компьютер, предназначенный для работы в офисе или дома. Настроить, обслужить и установить программное обеспечение компьютеров этого вида может сам пользователь;

•профессиональная рабочая станция – компьютер, обладающий огромной производительностью и предназначенный для профессиональной деятельности в некоторой области. Чаще всего его снабжают дополнительным оборудованием и специализированным программным обеспечением;

•ноутбук – переносной компьютер, обладающий вычислительной мощностью ПК. Он может в течение некоторого времени функционировать без питания от электрической сети;

•карманный ПК (электронный органайзер), не превосходящий по размерам калькулятор, клавиатурный или бесклавиатурный, по своим функциональным возможностям похож на ноутбук;

•сетевой ПК – компьютер для делового применения с минимальным набором внешних устройств. Поддержка работы и установка программного обеспечения осуществляются централизованно. Его также применяют для работы в вычислительной сети и для функционирования в автономном режиме;

•терминал – устройство, применяемое при работе в автономном режиме. Терминал не содержит процессора для выполнения команд, он выполняет только операции по вводу и передаче команд пользователя другому компьютеру и выдаче пользователю результата.

Рынок современных компьютеров и число выпускаемых машин определяются рыночными потребностями.

 

1.12. Структура современных вычислительных систем

В структуре сегодняшнего ПК типа IBM PC выделяют несколько основных компонент:

•системный блок, организующий работу, обрабатывающий информацию, производящий расчеты, обеспечивающий связь человека и ЭВМ. В состав системного блока ПК входит системная плата, динамик, вентилятор, источник питания, два дисковода;

•системная (материнская) плата, представляющая собой несколько десятков интегральных схем разного назначения. Интегральная схема основана на микропроцессоре, который предназначен для выполнения вычислений по хранящейся в запоминающем устройстве программе и общего управления ПК. Скорость действия ПК зависит от скорости работы процессора;

•память ПК, которая делится на внутреннюю и внешнюю: а) внутренняя (основная) память – это запоминающее устройство, связанное с процессором и предназначенное для хранения используемых программ и данных, которые участвуют в вычислениях. Внутренняя память подразделяется на оперативную (оперативное запоминающее устройство – ОЗУ) и постоянную (постоянное запоминающее устройство – ПЗУ). Оперативная память предназначена для приема, хранения и выдачи информации, а постоянная – для хранения и выдачи информации; б) внешняя память (внешнее запоминающее устройство – ВЗУ) применяется для размещения больших объемов информации и обмена ею с оперативной памятью. По конструкции ВЗУ отделены от центральных устройств ПК;

•аудиоплата (аудиокарта), используемая для воспроизведения и записи звука;

•видеоплата (видеокарта), обеспечивающая воспроизведение и запись видеосигнала.

К внешним устройствам ввода информации в ПК относятся:

а) клавиатура – совокупность датчиков, которые воспринимают давление на клавиши и замыкают некоторую электрическую цепь;

б) мышь – манипулятор, упрощающий работу с большинством компьютеров. Различают механические, оптико-механические и оптические мыши, а также проводные и беспроводные;

в) сканер – устройство, которое позволяет ввести в компьютер в графическом виде текст, рисунки, фотографии и др.

Внешними устройствами вывода информации являются:

а) монитор, используемый для вывода на экран различного вида информации. Размер экрана монитора измеряется в дюймах как расстояние между левым нижним и правым верхним углами экрана;

б) принтер, применяемый для печати подготовленного на компьютере текста и графики. Существуют матричные, струйные и лазерные принтеры.

Внешние устройства ввода применяются для того, чтобы информация, которой обладает пользователь, стала доступна для компьютера. Основным назначением внешнего устройства вывода является представление имеющейся информации в виде, доступном для пользователя.

 

Тема 2

Компьютерные технологии обработки информации

2.1. Классификация и устройство компьютеров

Компьютер(от англ. computer –вычислитель) – это программируемое электронное устройство, которое способно обрабатывать информацию, производить вычисления и выполнять другие задачи. Компьютеры подразделяют на два основных типа:

1) цифровые, оценивающие данные в форме числовых двоичных кодов;

2) аналоговые, анализирующие непрерывно меняющиеся физические величины, которые являются аналогами вычисляемых величин.

В настоящее время под словом «компьютер» понимают именно цифровой компьютер.

Основу компьютеров составляет аппаратура (Hardware) образованная электронными и электромеханическими элементами и устройствами. Принцип работы компьютеров заключается в выполнении программ (Software), которые заданы заранее и четко определены последовательностью арифметических, логических и других операций.

Структура любого компьютера обусловлена общими логическими принципами, на базе которых в нем выделяют следующие главные устройства:

•память, состоящую из перенумерованных ячеек;

•процессор, включающий в себя устройство управления (УУ) и арифметико-логического устройство (АЛУ);

•устройство ввода;

•устройство вывода.

Данные устройства соединяются каналами связи, передающими информацию.

 

2.2. Архитектура ЭВМ

Архитектура ЭВМ характеризуется качествами машины, влияющими на ее взаимодействие с пользователем. Архитектуpa определяет совокупность свойств машины и характеристик, которые необходимо знать программисту для эффективного использования ЭВМ при решении задач.

В свою очередь, архитектура определяет принципы организации вычислительной системы и функции центрального вычислительного устройства. Однако она не показывает то, как эти принципы реализуются внутри машины. Архитектура не зависит от программно недоступных ресурсов машины. Если у компьютеров одинаковая архитектура, то любая программа в машинном коде, написанная для одного компьютера, на другом компьютере работает аналогично с получением одинаковых результатов.

Для выполнения своих функций любой ЭВМ необходим минимальный набор функциональных блоков.

Архитектура сегодняшних компьютеров имеет классические черты, однако есть и некоторые отличия. В частности, запоминающее устройство (ЗУ) первых ЭВМ классической структуры подразделялось на два вида:

1) внутреннее, содержащее информацию, которая обрабатывалась в нем за некоторый момент времени;

2) внешнее, являющееся хранилищем всей информации, необходимой для работы компьютера.

В ходе технического прогресса число уровней в иерархии памяти компьютеров увеличивалось.

Арифметико-логическое устройство и устройство управления образуют единый блок, называемый центральным процессором.Перечень устройств для ввода и вывода данных включает в себя различные накопители на магнитных, оптических и магнитооптических дисках, сканеры, клавиатуру, мышь, джойстик, принтеры, графопостроители и т. д. Структура современного ПК содержит две основные части: центральную и периферийную, при этом к центральной части принято относить центральный процессор и внутреннюю память.

Центральным процессором(ЦП) называется устройство, обрабатывающее данные и осуществляющее программное управление этим процессом. Центральный процессор состоит из АЛУ, УУ, иногда и собственной памяти процессора; он чаще всего выполняется в виде большой интегральной схемы и носит название микропроцессора.

Внутренняя память – это устройство, предназначенное для хранения информации в специальном закодированном виде.

Оперативное запоминающее устройство, или оперативная память(ОП), – это ЦП, взаимодействующий с внутренним ЗУ. Оперативная память используется для приема, хранения и выдачи всей информации, которая требуется для выполнения операций в ЦП.

Внешние запоминающие устройстванеобходимы для хранения больших объемов информации, не использующейся в данный момент времени процессором. К ним относятся: накопители на магнитных дисках, накопители на магнитных лентах, накопители на оптических и магнитооптических дисках.

Виртуальной памятьюявляется совокупность ОП, ВЗУ и комплекса программно-аппаратных средств.

Конфигурация ЭВМ–это определенный состав ее устройств с учетом их особенностей.

Операцией вводаназывается передача информации от периферийных устройств в центральные, операцией вывода –процесс передачи информации из центральных устройств в периферийные.

Интерфейсыпредставляют собой сопряжения, осуществляющие в вычислительной технике связь между устройствами ПК.

 

2.3. Память в персональных компьютерах

Мощность компьютера зависит от его архитектуры и определяется не только тактовой частотой процессора. На быстродействие систем также влияют скорость функционирования памяти и пропускная способность шины.

Организация взаимодействия ЦП и ОП зависит от памяти компьютера и набора микросхем, установленных на системной плате.

Запоминающие устройства используются для хранения информации. В их функции входят ее запись и считывание. В совокупности эти функции называют обращением к памяти.

Одними из самых важных характеристик памяти являются емкость и время доступа. Чаще всего в ЗУ входит множество одинаковых запоминающих элементов. Такими элементами ранее служили ферритовые сердечники, которые объединялись в разрядную матрицу памяти. В настоящее время запоминающими элементами ОП служат большие интегральные микросхемы(БИС).

При обработке информации процессором возможно обращение к любой ячейке ОП, на основании этого ее называют памятью с произвольным доступом, или RAM. Обычно ПК обладают ОП, которая выполняется на микросхемах динамического типа, с ячейками, собранными в матрицу.

В памяти статического типа информация находится на статических триггерах. Для статической памяти не применяются циклы регенерации и операции перезарядки, т. е. время доступа к статической памяти намного меньше, чем к динамической. Скорость работы процессора сильно зависит от быстродействия используемой ОП. При этом она оказывает влияние на производительность всей системы. Для реализации одного запоминающего элемента динамической памяти требуется 1–2 транзистора, для статической – 4–6, т. е. стоимость статической памяти значительно превышает стоимость динамической. На основании этого в ПК чаще всего применяется ОП динамического типа, а для повышения производительности системы – сверхоперативная, или кэш-память.Сверхоперативную память изготавливают на элементах статического типа. При этом блок данных, обрабатываемых процессором, размещается в кэш-памяти, но обращение к ОП происходит только при появлении потребности в данных, не содержащихся в кэш-памяти. Использование кэш-памяти позволяет согласовать по скорости работу процессора и ОП на элементах динамического типа.

Интегральные микросхемы памяти в небольших количествах выпускают японские, корейские, американские и европейские компании.

Постоянные запоминающие устройства, или ROM, предназначены для хранения BIOS, который, в свою очередь, обеспечивает инвариантность программных средств к архитектуре системной платы. Кроме того, в BIOS находится необходимый набор программ ввода-вывода, обеспечивающий работу периферийных устройств.

В состав ПЗУ кроме программ ввода-вывода входят:

•программа тестирования при включении компьютера POST;

•программа начального загрузчика, выполняющего функцию загрузки ОС с диска.

Вследствие снижения цен на перепрограммируемые ПЗУ для хранения BIOS применяются запоминающие элементы, информацию в которых можно стирать электрически или с помощью ультрафиолетового излучения. В настоящий момент чаще всего для этих целей используют флэш-память, позволяющую вносить исправления в BIOS.

 

2.4. Понятие команды и системное программное обеспечение ЭВМ

Всякая компьютерная программа является последовательностью отдельных команд. Командойназывается описание операции, которую выполняет компьютер. Обычно у команды существует свой код (условное обозначение), исходные данные (операнды) и результат. Совокупность команд, которые выполняет данный компьютер, представляет собой систему командданного компьютера.

Программное обеспечение компьютера –это совокупность программ, процедур и инструкций, а также связанная с ними техническая документация, позволяющие использовать ЭВМ для решения конкретно поставленных задач.

По областям применения программное обеспечение компьютера подразделяют на системное и прикладное.

Системное, или общее, программное обеспечениевыступает в качестве «организатора» всех компонент компьютера, а также подключенных к нему внешних устройств.

В составе системного программного обеспечения выделяют две компоненты:

1) операционную систему – целый комплекс управляющих программ, являющихся интерфейсом между компонентами ПК и обеспечивающих наиболее эффективное использование ресурсов ЭВМ. Операционная система загружается при включении компьютера;

2) утилиты – вспомогательные программы технического обслуживания.

К утилитам относятся:

•программы для диагностики компьютера – проверяют конфигурацию компьютера и работоспособность его устройств; прежде всего осуществляется проверка жестких дисков на наличие ошибок;

•программы для оптимизации дисков – обеспечивают более быстрый доступ к информации, хранящейся нажестком диске, за счет оптимизации размещения данных на нем. Процесс оптимизации данных на жестком диске более известен как процесс дефрагментации диска;

•программы для очистки диска – находят и удаляют ненужную информацию (например, временные файлы, временные интернет-файлы, файлы, расположенные в корзине, и др.);

•программы-кэши для диска – ускоряют доступ к данным на диске путем организации в ОП компьютера кэш-буфера, содержащего наиболее часто используемые участки диска;

•программы динамического сжатия дисков – увеличивают объем информации, хранимой на жестких дисках, путем ее динамического сжатия. Действия данных программ для пользователя не заметны, они проявляются только через увеличение емкости дисков и изменение скорости доступа к информации;

•программы-упаковщики (или архиваторы) – упаковывают данные на жестких дисках за счет применения специальных методов сжатия информации. Данные программы позволяют освободить значительное место на диске за счет сжатия информации;

•антивирусные программы – предотвращают заражение компьютерным вирусом и ликвидируют его последствия;

•системы программирования – комплекс программ для автоматизации процесса программирования сценариев работы ЭВМ.

Прикладное программное обеспечениепредставляет собой специальные программы, которые применяются при решении определенных практических задач. В настоящее время программистами разработано множество прикладных программ, применяемых в математике, бухгалтерии и других областях науки.

 

2.5. Базовая система ввода-вывода (BIOS). Понятие CMOS RAM

Вазовая система ввода-вывода(Basic Input Output System – BIOS) является, с одной стороны, составной частью аппаратных средств, с другой – одним из программных модулей ОС. Возникновение данного названия связано с тем, что BIOS включает в себя набор программ ввода-вывода. С помощью этих программ ОС и прикладные программы могут взаимодействовать как с различными устройствами самого компьютера, так и с периферийными устройствами.

Как составная часть аппаратных средств система BIOS в ПК реализована в виде одной микросхемы, установленной на материнской плате компьютера. Большинство современных видеоадаптеров и контроллеров-накопителей имеют собственную систему BIOS, которая дополняет системную BIOS. Одним из разработчиков BIOS является фирма IBM, создавшая NetBIOS. Данный программный продукт не подлежит копированию, поэтому другие производители компьютеров были вынуждены использовать микросхемы BIOS независимых фирм. Конкретные версии BIOS связаны с набором микросхем (или чипсетом), находящихся на системной плате.

Как программный модуль ОС система BIOS содержит программу тестирования при включении питания компьютера POST (Power On Self Test – самотестирование при включении питания компьютера). При запуске этой программы тестируются основные компоненты компьютера (процессор, память и др.). Если при подаче питания компьютера возникают проблемы, т. е. BIOS не может выполнить начальный тест, то извещение об ошибке будет выглядеть как последовательность звуковых сигналов.

В «неизменяемой» памяти CMOS RAM хранится информация о конфигурации компьютера (количестве памяти, типах накопителей и др.). Именно в этой информации нуждаются программные модули системы BIOS. Данная память выполнена на основе определенного типа CMOS-структур (CMOS – Complementary Metal Oxide Semiconductor), которые характеризуются малым энергопотреблением. Память CMOS энергонезависима, так как питается от аккумулятора, расположенного на системной плате, или батареи гальванических элементов, смонтированной на корпусе системного блока.

Изменение установок в CMOS выполняют через программу SETUP. Ее можно вызвать путем нажатия специальной комбинации клавиш (DEL, ESC, CTRL-ESC, или CRTL-ALT-ESC) во время начальной загрузки (некоторые BIOS позволяют запускать SETUP в любое время нажатием CTRL-ALT-ESC). В AMI BIOS чаще всего это осуществляется нажатием клавиши DEL (и удержанием ее) после нажатия кнопки RESET или включения ЭВМ.

 

Тема 3

Архитектура аппаратных и программных средств IBM-совместимых технологий

3.1. Микропроцессоры

Центральный процессор – неотъемлемая часть любой ЭВМ. Обычно это большая интегральная схема, представляющая собой кремниевый кристалл в пластмассовом, керамическом или металлокерамическом корпусе, на котором расположены выводы для приема и выдачи электрических сигналов. Функции ЦП выполняют микропроцессоры.Они осуществляют вычисления, пересылку данных между внутренними регистрами и управление ходом вычислительного процесса. Микропроцессор взаимодействует непосредственно с ОП и контроллерами системной платы. Главные носители информации внутри него – регистры.

Неотъемлемой частью микропроцессора являются:

•АЛУ, состоящее из нескольких блоков, например блока обработки целых чисел и блока обработки чисел с плавающей точкой;

•устройство управления, которое вырабатывает управляющие сигналы для выполнения команд;

•внутренние регистры.

В основу работы каждого блока микропроцессора положен принцип конвейера, который заключается в следующем. Реализация каждой машинной команды разбивается на отдельные этапы, а выполнение следующей команды программы может быть начато до завершения предыдущей. Поэтому микропроцессор выполняет одновременно несколько следующих друг за другом команд программы, и время на выполнение блока команд уменьшается в несколько раз. Суперскалярнойназывают архитектуру, в основу работы которой положен принцип конвейера. Это возможно при наличии в микропроцессоре нескольких блоков обработки.

В программе могут встречаться команды передачи управления, выполнение которых зависит от результатов выполнения предшествующих команд. В современных микропроцессорах при использовании конвейерной архитектуры предусматриваются механизмы предсказания переходов. Другими словами, если в очереди команд появилась команда условного перехода, то предсказывается, какая команда будет выполняться следующей до определения признака перехода. Выбранная ветвь программы выполняется в конвейере, однако запись результата осуществляется только после вычисления признака перехода, тогда, когда переход выбран верно. В случае неправильного выбора ветви программы микропроцессор возвращается назад и выполняет правильные операции в соответствии с вычисленным признаком перехода.

Важными характеристиками микропроцессора являются:

•его быстродействие, которое в значительной степени зависит от тактовой частоты микропроцессора;

•архитектура микропроцессора, определяющая, какие данные он может обрабатывать, какие машинные инструкции входят в набор выполняемых им команд, как происходит обработка данных, каков объем внутренней памяти микропроцессора.

В состав микропроцессора может входить кэш-память (сверхоперативная), обеспечивающая более быструю передачу информации, чем ОП. Различают кэш-память первого уровня, которая обычно встроена в тот же кристалл и работает на одинаковой с микропроцессором частоте; кэш-память второго уровня – общая, когда команды и данные хранятся вместе, и разделенная, когда они хранятся в разных местах.

При решении сложных математических и физических задач в некоторых компьютерах предусмотрено использование специального устройства, которое называется математическим сопроцессором.Это устройство представляет собой специализированную интегральную микросхему, работающую во взаимодействии с ЦП и предназначенную для выполнения математических операций с плавающей точкой.

 

3.2. Системные платы. Шины, интерфейсы

Основная электронная часть ПК конструктивно располагается в системном блоке. Системный блок может быть нескольких размеров и типов, например настольным, типа «башня». Различные компоненты компьютера внутри системного блока размещаются на системной плате, которую именуют материнской.

Материнская плата играет значительную роль, так как от ее характеристик во многом зависит работа ПК. Существует несколько типов системных плат, которые обычно предназначены для конкретных микропроцессоров. Выбор системной платы во многом определяет возможности будущей модернизации компьютера. Выбирая системную плату, необходимо учитывать следующие ее характеристики:

•возможные типы используемых микропроцессоров с учетом их рабочих частот;

•число и тип разъемов системной шины;

•базовый размер платы;

•возможность наращивания оперативной и кэш-памяти;

•возможность обновления базовой системы ввода-вывода (BIOS).

На системной плате располагаются одна или несколько интегральных микросхем. Они управляют коммуникациями между процессором, памятью и устройствами ввода-вывода. Их называют системным набором микросхем(chipset).

Наибольшим спросом среди микросхем пользуются Intel 440LX, Intel 440ВХ. Самым крупным производителем системных плат является фирма Intel, которая ввела большинство технологических и технических новшеств для системных плат. Однако изделия фирмы Intelнедешевы.

Непосредственно на системной плате находится системная шина, которая предназначена для передачи информации между процессором и остальными компонентами ПК. С помощью шины происходит как обмен информацией, так и передача адресов, служебных сигналов.

В IBM PC-совместимых компьютерах вначале использовалась 16-разрядная шина, работающая с тактовой частотой 8 МГц. После появления новых микропроцессоров и высокоскоростных периферийных устройств был предложен новый стандарт – шина МСА с более высокой тактовой частотой. Она содержала функции арбитража, позволяющие избегать конфликтных ситуаций при совместной работе нескольких устройств. В этой шине увеличена пропускная способность и достигнута большая компактность, а разрядность шины МСА-16 и 32.

В 1989 г. была разработана шина EISA, фактически ставшая надстройкой ISA. Данная шина применялась в основном в высокопроизводительных серверах и профессиональных рабочих станциях, предъявляющих высокие требования к быстродействию.

Чтобы увеличить производительность системы, с 1991 г. стали использовать так называемые локальные шины.Они связывали процессор непосредственно с контроллерами периферийных устройств и тем самым увеличивали общее быстродействие ПК. Среди локальных шин наибольшей известностью пользуется шина VL-bus, которая была ориентирована на ПК с микропроцессорами семейства i486, хотя может также работать и с процессорами Pentium.

Процессорно-независимая шина PCI работает с тактовой частотой 33 МГц и обладает высокой скоростью передачи данных. Специально для этой шины выпущены многие адаптеры периферийных устройств – видеоплаты, контроллеры дисков, сетевые адаптеры и др.

Для работы с графическими и видеоданными разработали шину AGP, более быструю, чем PCI. Шина AGP напрямую соединяет графический адаптер с оперативной памятью ПК, а это очень важно при работе с видео-, двух– и трехмерными приложениями; функционирует она на частоте 66 МГц.

Периферийные устройства подключаются к системной шине с помощью контроллеров или адаптеров. Адаптеры представляют собой специальные платы, различные для разных типов периферийных устройств.

 

3.3. Средства управления внешними устройствами

Внешние устройстваобеспечивают ввод, вывод и накопление информации в ПК, взаимодействуют с процессором и ОП через системную или локальную шину, а также через порты ввода-вывода. Они размещаются как вне системного блока (клавиатура, мышь, монитор, принтер, внешний модем, сканер), так и внутри него (накопители на дисках, контроллеры устройств, внутренние факс-модемы). Часто внешние устройства называют периферийными, хотя в узком смысле термин «периферийные» означает часть устройств, обеспечивающих ввод и вывод информации (клавиатуру, координатные манипуляторы, сканеры, принтеры и т. д.).

Большинство внешних устройств для IBM-совместимых ПК управляется контроллерами, которые установлены в разъемы расширения материнской платы. Контроллеромназывается плата, которая управляет работой конкретного типа внешних устройств и обеспечивает их связь с системной платой. Большинство контроллеров являются платами расширениясистемы, исключение могут составлять контроллеры портов и накопителей на гибких и жестких магнитных дисках, встраиваемых непосредственно в материнскую плату. В ранних моделях IBM-совместимых ПК данные контроллеры обычно размещались на отдельной плате, именуемой мультиплатоиили мультикартой. Иногда в портативных компьютерах в материнскую плату встраиваются и другие контроллеры, в том числе видеоадаптеры и звуковые платы.

Платы расширения, называемые дочерними платами, устанавливаются на материнскую плату. Они предназначены для подключения к шине ПК дополнительных устройств, а материнская плата обычно имеет от 4 до 8 разъемов расширения. В соответствии с разрядностью процессора и параметрами внешней шины данных материнской платы они бывают 8-, 16– и 32-разрядные.

Дочерние платы подразделяют на два вида:

1) полноразмерные, т. е. такойже длины, как и материнская плата;

2) полуразмерные, т. е. в два раза короче.

В разъемы расширения могут быть установлены любые дочерние платы, если они согласованы с шиной по управлению, разрядности и питанию.

Последовательный порт передает информацию по одному биту, а через последовательные порты подключаются такие устройства, как мышь, внешний модем и плоттер.

Важнейшими типами плат расширения являются:

1) видеоадаптеры (необходимы для нормального функционирования ПК);

2) внутренние модемы (требуются для использования внутренних модемов);

3) звуковые платы (предназначены для систем мультимедиа);

4) адаптеры локальной сети (необходимы при использовании компьютера в среде локальной вычислительной сети).

Помимо перечисленных используются и другие типы плат расширения:

•управления сканером;

•управления стримером;

•интерфейс SCSI;

•контроллеры устройств виртуальной реальности;

•АЦП;

•устройства считывания штрихового кода;

•управление световым пером;

•связи с большими ЭВМ;

•платы акселераторов.

В ПК предусмотрены специальные контроллеры ввода-вывода, который реализуется через порты ввода-вывода.

Последовательный портпередает информацию по одному биту, а параллельныйпередает информацию побайтно. Через последовательные порты подключаются такие устройства, как мышь, внешний модем и плоттер.

 

3.4. Накопители информации

Прибор, предназначенный для длительного хранения значительных объемов информации, называется накопителемили внешним запоминающим устройством, устройством массовой памяти.

В зависимости от размещения в ПК различают накопители:

1) внешние, которые находятся вне системного блока и имеют собственный корпус, источник питания, а также выключатель и кабель;

2) внутренние, которые находятся на монтажной стойке системного блока компьютера. Данные устройства не обладают собственным корпусом и подключаются к контроллеру накопителей и источнику питания ПК.

По способу записи различают устройства произвольного и последовательного доступа.

К основным типам накопителей на дисках относятся:

•накопители на гибких магнитных дисках;

•накопители на жестких магнитных дисках (НЖМД), винчестер;

•накопители на сменных компакт-дисках.

В накопителях на гибких магнитных дисках {дискетах)запись информации производится по дорожкам, делящимся на отдельные секторы. Между этими секторами существуют межсекторные промежутки. В зависимости от типа устройства и носителя и способа разметки последнего подбираются число дорожек и секторов и размер сектора.

Принцип работы таких накопителей заключается в том, что дискета, которая устанавливается в накопитель, вращается со скоростью 300–360 об/мин, чем обеспечивается доступ к нужному сектору. Запись на диск специальной управляющей информации носит название форматирования.

Накопители на жестких магнитных дискахпредставляют собой несколько металлических дисков, которые размещены на одной оси и заключены в герметизированный металлический корпус. Перед использованием эти диски нужно отформатировать. На жестких дисках информация располагается на дорожках, а внутри дорожек – на секторах. Совокупность дорожек на пакете магнитных дисков с одинаковыми номерами называется цилиндром.

Среди основных характеристик НЖМД выделяют:

•информационную емкость;

•плотность записи;

•число дорожек;

•время доступа (миллисекунды);

•наружные габаритные размеры;

•накопители на перезаписываемых компакт-дисках;

•накопители на сменных магнитных дисках большой емкости;

•накопители на магнитооптических дисках.

Подобные накопители подключают к системной шине с помощью различного типа интерфейса, среди которых элементы соединения и вспомогательные схемы управления, нужные для соединения устройств.

Накопители на сменных компакт-дискахприменяются при использовании систем мультимедиа. Эти накопители (CD-ROM) приспособлены для считывания информации с компакт-дисков, вмещающих до 700 Мб. Запись на подобные диски осуществляется единожды с помощью специального оборудования.

Накопители на перезаписываемых компакт-дискахCD-RW, в отличие от накопителей на СБ^дисках, позволяют применять многократную перезапись.

Накопители на сменных магнитных дисках большой емкостипредназначены для записи на сменный диск до 200 Мб информации и более.

Накопители на магнитооптических дискахиспользуют оригинальную схему чтения-записи информации, обеспечивающую высокую информационную емкость носителей и надежность хранения записанной информации. Запись на эти носители осуществляется долговременно, а считывание достаточно быстро.

Устройства для записи и чтения цифровой информации на кассету с магнитной лентой называются стримерами.Они являются накопителями на магнитной ленте.Их используют для резервного архивирования информации. Среди положительных качеств таких записей большие объемы хранимой информации и низкая стоимость хранения данных.

 

3.5. Видеоконтроллеры и мониторы

Устройства, осуществляющие отображение информации на экране монитора, называются видеоадаптерами, или видеоконтроллерами.Видеоконтроллер – это плата расширения, обеспечивающая формирование изображения на экране монитора с использованием информации, которая передается от процессора.

Видеоконтроллеры подключают к ПК с помощью специальных локальных шин PCI или AGP. Интерфейс AGP применяется для ускорения обмена данными между процессором и видеоплатой. Многие видеоплаты рассчитаны на подключение к материнской плате через разъем AGP.

Информация отображается в текстовом или графическом режиме. В текстовом режимеиспользуется посимвольное изображение данных на экране монитора, и данные изображения хранятся в ПЗУ. Изображения после включения питания компьютера перезаписываются из ПЗУ в ОП. При работе в графическом режимеприменяется поточечное отображение информации на экране, при этом каждая точка экрана моделируется рядом битов, которые характеризуют цвет каждой из изображаемых точек. В режиме VGA каждая точка задается последовательностью из четырех бит, поэтому каждая точка может отображаться в одном из 16 = 2

возможных цветов. Моделирование графического экрана можно осуществить разными наборами точек, как по вертикали, так и горизонтали.

Современные видеоадаптеры носят название графических ускорителей, так как они имеют специальные микросхемы, позволяющие ускорить обработку больших массивов видеоданных. Также данные графические ускорители называют акселераторами, они обладают своим специализированным микропроцессором и памятью. Важен объем этой памяти, так как в ней формируется полное графическое поточечное изображение экрана. В процессе своей работы видеоадаптер применяет собственную память, но не оперативную.

Однако для качественного воспроизведения изображения недостаточно иметь видеопамять необходимого объема. Важно, чтобы монитор мог обеспечивать вывод в режимах с высоким разрешением и чтобы программное обеспечение, которое задает формирование изображения, могло поддерживать соответствующий видеорежим.

В настольных компьютерах применяются мониторына электронно-лучевых трубках, жидкокристаллические мониторы (LCD) и реже плазменные мониторы.

При работе в графических средах следует использовать мониторы с диагональю экрана не менее 15–17 дюймов. Среди основных параметров мониторов можно выделить:

•максимальное разрешение;

•длину диагонали;

•расстояние между пикселями;

•частоту кадровой развертки;

•степень соответствия стандартам экологической безопасности.

Изображение считается более качественным, если расстояние между пикселями минимально, а частота кадровой развертки высока. При частоте не менее 75 Гц обеспечивается уровень комфортности изображения для глаза. Идеальной частотой развертки считается частота 110 Гц, при которой изображение воспринимается абсолютно неподвижным. Частота кадровой развертки не является постоянной величиной, т. е. при работе с большей разрешающей способностью один и тот же монитор использует меньшую частоту. На качество изображения влияет и вид применяемого видеоадаптера, так как недорогие модели могут не поддерживать соответствующую частоту.

В персональных компьютерах используются LCD– и TFT-дисплеи, а также дисплеи с двойным сканированием экрана. Дисплеи TFT наиболее перспективные, но достаточно дорогие. Разрешающая способность TFT-дисплеев составляет 640x480, а в более дорогих портативных ПК – 800x600 точек и реже 1024x768.

 

3.6. Устройства ввода информации

Основным стандартным устройством ввода информации в ПК является клавиатура.В ее корпусе присутствуют датчики клавиш, схемы дешифрации и микроконтроллер. Каждая клавиша соответствует определенному порядковому номеру. При надавливании на клавишу информация об этом передается процессору в виде соответствующего кода. Данный код интерпретируется драйвером –специальной программой, принимающей вводимые с клавиатуры символы.

На клавиатуре присутствуют клавиши, которые не посылают процессору никакого кода и используются для переключения состояния специальных признаков статуса клавиатуры.

Для экономии места в портативных и карманных ПК используются клавиатуры с небольшим числом клавиш.

Расположение клавиш на клавиатуре соответствует стандарту латинских печатающих машинок.

Координатные манипуляторы –это устройства покоординатного ввода. К ним относятся мыши, трекболы и пойнтеры.

Мышьподключают к компьютеру через последовательный порт. При перемещении мыши информация о виде данного перемещения передается драйверу, который изменяет местоположение курсора мыши на экране. Благодаря этому можно сообщать прикладной программе текущие значения его координат. Мышь играет особую роль при работе с графической информацией в графических редакторах, системах автоматизированного проектирования. Чаще всего используются левая и правая кнопки мыши. Обычно программы отслеживают одно– и двукратное нажатие левой клавиши мыши, а также однократное нажатие правой.

Трекболомназывают шар, встроенный в клавиатуру, который отличается от мыши тем, его не нужно перемещать по рабочей поверхности.

Пойнтерявляется аналогом джойстика и размещается на клавиатуре.

Трекболы и пойнтеры чаще всего применяются в портативных компьютерах, а в карманных компьютерах в качестве устройства покоординатного ввода используется сенсорный экран.

Сканераминазывают устройства ввода графической информации в компьютер. Различают ручные, планшетные и рулонные сканеры; черно-белые и цветные.

Используя ручной сканер, необходимо перемещать его вдоль поверхности листа, с которого снимается изображение. Отдельные элементы изображения можно вводить по частям и совмещать их в необходимой последовательности, применяя специальные программы.

Планшетные сканерыотличаются простотой в использовании, большей производительностью, чем ручные, и дороговизной. При работе с такими сканерами книгу в развернутом виде помещают на планшет сканера, и он самостоятельно считывает весь лист целиком. Данные сканеры имеют высокую разрешающую способность, благодаря чему их используют для ввода в ПК фотографий и сложных иллюстраций.

Рулонные сканерытакже являются простыми в использовании и предназначены для непрерывного считывания информации с рулонных носителей, например, при анализе экспериментальных данных.

<== предыдущая лекция | следующая лекция ==>
The following type of attachment may be unsafe to download from an untrusted sender…? | 




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.