Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Ефекти лавинного множення у напівпровідниках.
У звичайному фотодіоді при поглинанні світла виникають електронно-діркові пари, причому при поглинанні одного фотона утвориться одна електронно-діркова пара. Неосновні носії цих пар або рекомбінують, або протікають через p-n-перехід, породжуючи фотострум. У ЛФД носії, що проходять через p-n-перехід, одержують в сильному полі переходу енергію, достатню для ударної іонізації атомів решітки, і створюють на своєму шляху повторні пари. В результаті струмовий сигнал за рахунок лавинного множення збільшується. Для розвитку лавини необхідне виконання двох умов: товщина збіднілої області p-n-переходу, у якій зосереджене внутрішнє електричне поле, повинна перевищувати довжину вільного пробігу неосновних носіїв заряду; енергія, що накопичується неосновними носіями в області переходу, повинна бути достатньою для збудження валентних електронів напівпровідника, тобто перевищувати поріг ударної іонізації: qUi = (2.3)Eg. (2.1) Рис. 1.11. Структура ЛФД (а), розподіл електричного поля (б). При виконанні цих умов створюються повторні пари носіїв, що розділяються полем переходу. Товщина області об'ємного заряду переходу і напруженість внутрішнього електричного поля в ній при даному зсуві залежать від структури діода і від питомого опору напівпровідника (рис. 1.11). Тому напруга лавинного пробою пов'язана з питомим опором матеріалу Uл.п = b (для Ge b = 85, = 0, 62). (2.2) Лавинне підсилення фотоструму, що проходить через освітлений p-n-перехід, використовується в ЛФД, що працюють у передпробійному режимі. Залежність коефіцієнта лавинного підсилення від напруги на фотодіоді виражається наближеним співвідношенням Міллера M = [1 - (U / Uл.п)n]-1, (2.3) де n – коефіцієнт, що залежить від іонізаційних можливостей електронів і дірок, від довжини хвилі прийнятого випромінювання, а також від матеріалу і конструкції ЛФД. Для кремнієвих фотодіодів n = 3, 4 … 4, 0, якщо генерація носіїв відбувається в p-області і лавина утвориться в результаті ударної іонізації, виробленої електронами; n = l, 2 … 2, 0, якщо ударна іонізація провадиться дірками, що генеруються в n-області. Рис. 1.12 Залежність коефіцієнтів іонізації: електронів і дірок від напруженості поля в кремнії при кімнатній температурі.
Рис. 1.12. Залежність коефіцієнтів іонізації Дуже різка залежність коефіцієнта лавинного множення (мал. 2.3) від прикладеної напруги істотно ускладнює можливість практичного використання ЛФД із високими коефіцієнтами підсилення через дуже жорстку вимогу до точності підтримки на діоді робочої напруги. Сильна залежність напруги лавинного пробою від температури призводить до проблеми термостабілізації. Всі ці чинники обмежують застосування лавинних діодів в апаратурі. Сильна залежність коефіцієнта від напруженості поля в області множення виникає через дві основних причини: існує позитивний зворотний зв'язок між коефіцієнтом множення і напруженістю поля через наявність двох типів носіїв, що можуть іонізувати; швидкість іонізації експоненціально зростає із ростом напруженості поля. Розглянемо вплив позитивного зворотного зв'язку. Якщо в область множення інжектується чисто електронний струм, то спочатку первинні електрони генерують повторні пари. Повторні електрони стають невідмінні від первинних. Повторні дірки рухаються в протилежному напрямку і під час прямування генерують нові пари. Коефіцієнт множення Мn для інжектованого електронного струму залежить від іонізуючих можливостей носіїв обох типів Mn = , (2.4) де an – швидкість іонізації електронів (середнє іонізуючих співударів електронів на одиницю довжини шляху в напрямку поля); р – швидкість іонізації дірок; d – ширина області збідніння. Аналогічний вираз має коефіцієнт множення і для інжектованого диркового струму. Зворотний зв'язок між коефіцієнтом множення і прикладеною напругою, зумовлена присутністю носіїв двох типів, призводить до нелінійного зростання коефіцієнта множення при збільшенні напруги. Для зменшення зворотного зв'язку треба, щоб фотострум складався з носіїв із великою швидкістю іонізації. Отже, бажано мати матеріал, для якого відношення швидкостей іонізації електронів і дірок велике на всьому інтервалі іонізуючих полів. У таких матеріалах буде меншим і час наростання лавини. На даний час широке застосування в діапазоні довжин хвиль 1, 0…1, 6 мкм одержали германієві лавинні фотодіоди, що мають високий квантовий вихід, що слабко залежить від температури. Їхнім основним недоліком є великі темнові струми, що сильно зростають із ростом температури. Це не дозволяє реалізувати в схемах коефіцієнта підсилення більше 10. Крім того, коефіцієнти іонізації електронів і дирок близькі між собою: b/a = 2. Згадані причини призводять у реальних схемах до нестабільності і великих додаткових шумів. Темновий струм, утворений об'ємною тепловою генерацією носіїв, можна знижувати вибором матеріалу з великим об'ємним часом життя. Зниження струму поверхневих " відпливів" досягається пасивацією поверхні. Істотного зменшення темнових струмів, можна домогтися зниженням робочих температур, наприклад за допомогою термоелектричних охолоджувачів, але це ускладнює конструкцію виробу. Кремній значно кращий напівпровідниковий матеріал для створення лавинних фотодіодів.
|