Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! H – параметры транзистораСтр 1 из 19Следующая ⇒
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра « Электротехнологии и электрооборудование » МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ Электроника Направление подготовки (специальность) 35.03.06 Агроинженерия Профиль образовательной программы Электрооборудование и электротехнологии Форма обучения заочная сокращенная
Оренбург 2016 г. СОДЕРЖАНИЕ
КОНСПЕКТ ЛЕКЦИЙ Лекция №1 (2 часа). Тема: «Основы электроники. Типовые электронные элементы»
1.1.1 Вопросы лекции: 1. Предмет курса. Краткая историческая справка. Основные определения. 2. Электронно-дырочные переходы и приборы на их основе. 3. Биполярные транзисторы. Полевые транзисторы. Тиристоры. Краткое содержание вопросов
1. Предмет курса. Краткая историческая справка. Основные определения. Электроника — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации. Возникновению электроники предшествовало изобретение радио. Поскольку радиопередатчики сразу же нашли применение (в первую очередь на кораблях и в военном деле), для них потребовалась элементная база, созданием и изучением которой и занялась электроника. Элементная база первого поколения была основана на электронных лампах. Соответственно получила развитие вакуумная электроника. Её развитию способствовало также изобретение телевидения и радаров, которые нашли широкое применение во время Второй мировой войны. Но электронные лампы обладали существенными недостатками. Это прежде всего большие размеры и высокая потребляемая мощность (что было критичным для переносных устройств). Поэтому начала развиваться твердотельная электроника, а в качестве элементной базы стали применять диоды и транзисторы. Дальнейшее развитие электроники связано с появлением компьютеров. Компьютеры, основанные на транзисторах, отличались большими размерами и потребляемой мощностью, а также низкой надежностью (из-за большого количества деталей). Для решения этих проблем начали применяться микросборки, а затем и микросхемы. Число элементов микросхем постепенно увеличивалось, стали появляться микропроцессоры. В настоящее время развитию электроники способствует также появление сотовой связи, а также различных беспроводных устройств, навигаторов, коммуникаторов, планшетов и т. п. Основными вехами в развитии электроники можно считать: · изобретения А. С. Поповым радио (7 мая 1895 года), и начало использования радиоприёмников, · изобретение Ли де Форестом лампового триода, первого усилительного элемента, · использование Лосевым полупроводникового элемента для усиления и генерации электрических сигналов, · развитие твёрдотельной электроники, · использование проводниковых и полупроводниковых элементов (работы Иоффе, Шотки), · изобретение в 1947 году транзистора (Уильям Шокли, Джон Бардин и Уолтер Браттейн), · создание интегральной микросхемы и последующее развитие микроэлектроники, основной области современной электроники. Можно различать следующие области электроники: · физика (микромира, полупроводников, электромагнитных волн, магнетизма, электрического тока и др.) — область науки, в которой изучаются процессы, происходящие с заряженными частицами, · бытовая электроника — бытовые электронные приборы и устройства, в которых используется электрическое напряжение, электрический ток, электрическое поле или электромагнитные волны.(Например телевизор, мобильный телефон, утюг, лампочка, электроплита,.. и др.). · Энергетика выработка, транспортировка и потребление электроэнергии, электро приборы высокой мощности (например электродвигатель, электрическая лампа, электростанция), электрическая система отопления, линия электропередачи. · Микроэлектроника - электронные устройства, в которых в качестве активных элементов используются микросхемы: o оптоэлектроника - устройства в которых используются электрический ток и потоки фотонов, o звуко-видео-техника - устройства усиления и преобразования звука и видео изображений, o цифровая микроэлектроника - устройства на микропроцесорах или логических микросхемах. Например: электронный калькулятор, компьютер, цифровой телевизор, мобильный телефон, принтер, робот, панель управления промышленным оборудованием, средствами транстпорта, и другие бытовые и промышленные устройства. Электронное устройство может включать в себя самые разные материалы и среды, где происходит обработка электрического сигнала с использованием разных физических процессов. Но в любом устройстве обязательно имеется электрическую цепь. Изучению различных аспектов электроники посвящены многие научные дисциплины технических вузов.
2. Электронно-дырочные переходы и приборы на их основе Электрический переход в полупроводнике — это граничный слой между двумя областями, физические характеристики которых существенно различаются. Переходы между двумя областями полупроводника с различным типом электропроводности называют электронно-дырочными или p-n-переходами. Переходы между двумя областями с одним типом электропроводности (п- или p -типом), отличающиеся концентрацией примесей и соответственно значением удельной проводимости, называют электронно-электронными (n + - n'-переход) или дырочно-дырочными (p+ - p'-переход), причем знак «+» в обозначении одного из слоев показывает, что концентрация носителей заряда одного типа в этом слое значительно выше, чем во втором, и поэтому слой имеет меньшее удельное электрическое сопротивление. Переходы между двумя полупроводниковыми материалами, имеющими различную ширину запрещенной зоны, называют гетеропереходами. Если одна из областей, образующих переход, является металлом, то такой переход называют переходом металл — полупроводник. Электрические переходы нельзя создать путем механического контакта двух областей с разными физическими свойствами, хотя при рассмотрении физических процессов такая абстракция обычно используется. Это объясняется тем, что поверхности кристаллов обычно загрязнены оксидами и атомами других веществ. Существенную роль играет воздушный зазор, устранить который при механическом контакте практически невозможно. Полупроводниковым диодом называется полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода. Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 1.
Рис. 1. Схема структуры полупроводникового диода (а) и его графическое обозначение (б)
Буквами p и n обозначены слои полупроводника с проводимостями соответственно p -типа и n -типа. В контактирующих слоях полупроводника имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n. В итоге в приграничных областях слоя p ислоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление. Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют некомпенсированные объемные заряды, создающие электрическое поле с напряженностью Е. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n. Таким образом, в зависимости от полярности проходящего через диод тока, проводимость диода существенно изменяется, приводя к изменению величину проходящего тока. Основные характеристики полупроводникового диода представляются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика – это зависимость тока i, протекающего через диод, от напряжения u, приложенного к диоду. Вольт-амперной характеристикой называют и график этой зависимости (рис. 2). Рис. 2. Вольт-амперная характеристика и основные параметры полупроводникового диода
Диод Шоттки. В диоде Шоттки используется не p-n -переход, а выпрямляющий контакт металл-полупроводник. Условное графическое обозначение диода Шоттки представлено на рис. 3, б. В обычных условиях прямой ток, образованный электронами зоны проводимости, переходящими из полупроводника в металл, имеет очень малую величину. Это является следствием недостатка электронов, энергия которых позволила бы им преодолеть данный барьер. Для увеличения прямого тока необходимо «разогреть» электроны в полупроводнике, поднять их энергию. Такой разогрев может быть осуществлен с помощью электрического поля. Если подключить источник внешнего напряжения плюсом к металлу, а минусом к полупроводнику n -типа, то потенциальный барьер понизится и через переход начнет протекать прямой ток. При противоположном подключении потенциальный барьер увеличивается и ток оказывается весьма малым. Диоды Шоттки – очень быстродействующие приборы, они могут работать на частотах до десятков гигагерц (1 ГГц =1· 109 Гц). У диода Шоттки может быть малый обратный ток и малое прямое напряжение (при малых прямых токах) – около 0, 5 В, что меньше, чем у кремниевых приборов. Максимально допустимый прямой ток может составлять десятки и сотни ампер, а максимально допустимое напряжение – сотни вольт. Стабилитрон. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Условное графическое обозначение стабилитрона представлено на рис. 3, а.
В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется незначительно, т. е. стабилитрон стабилизирует напряжение. Вольт-амперная характеристика кремниевого стабилитрона Д814Д представлена на рис. 4. Рис. 4. Вольт-амперная характеристика кремниевого стабилитрона Д814Д В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удельного сопротивления базы. В стабилитронах с низкоомной базой (низковольтных, до 5, 7 В) имеет место туннельный пробой, а в стабилитронах с высокоомной базой (высоковольтных) – лавинный пробой. Основными является следующие параметры стабилитрона:
Величины Uст , Iст.мин и Iст.макс принято указывать как положительные. Для примера применения стабилитрона обратимся к схеме так называемого параметрического стабилизатора напряжения (рис. 5.). Легко заметить, что если напряжение uвх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практически не вызывают изменения напряжения uвых (при изменении напряжения uвх изменяется только ток i, а также напряжение ).
Рис. 5. Схема параметрического стабилизатора напряжения Стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах. Стабистор. Это полупроводниковый диод, напряжение на котором при прямом включении (около 0, 7 В) мало зависит от тока (прямая ветвь на соответствующем участке почти вертикальная). Стабистор предназначен для стабилизации малых напряжений. Светодиодом называется полупроводниковый диод, предназначенный для преобразования электрической энергии в энергию некогерентного светового излучения. При протекании через диод прямого тока происходит инжекция неосновных носителей заряда (электронов или дырок) в базовую область диодной структуры Процесс самопроизвольной рекомбинаци инжектированных неосновных носителей заряда, происходящих как в базовой области, так и в самом p-n переходе, сопровождается переходом их с высокого энергетического уровня на более низкий; при этом избыточная энергия выделяется путем излучения кванта света. Чтобы кванты энергии – фотоны, освободившиеся при рекомбинации, соответствовали квантам видимого света, ширина запрещенной зоны исходного полупроводника должна быть относительно большой (Еg > 1, 8 эВ). Исходя из этого ограничения, для изготовления светодиодов используются следующие полупроводниковые материалы: фосфид галлия (GaP), карбид кремния (SiC), твердые растворы: галлий—мышьяк—фосфор (GaAsP) и галлий—мышьяк—алюминий (GaAsAl), а также нитрид галлия (GaN), который имеет наибольшую ширину запрещенной зоны (Eg > 3, 4 эВ), что позволяет получать излучение в коротковолновой части видимого спектра вплоть до фиолетового. Обычно излучение светодиодов является монохроматическим с оговоренной для каждого типа максимальной длиной волны, имеющий незначительный разброс внутри каждого типа. Светодиоды с управляемым цветом свечения изготавливаются на основе двух светоизлучающих переходов, один из которых имеет резко выраженный максимум спектральной характеристики в красной полосе, другой — в зеленой. При совместной работе цвет результирующего излучения зависит от соотношения токов через переходы. Основным технологическим методом изготовления светодиодов является метод эпитаксиального наращивания. Это жидкофазная эпитаксия или эпитаксия из газовой фазы. В некоторых случаях, в основном, при использовании карбида кремния, применяется метод диффузии примесей (акцепторных или донорных) из газовой фазы, проводящийся внутри кварцевых ампул. Фотодиоды – селективные регистрирующие фотоэлектрические ПЛЭ, основанные на явлении фотовольтаического эффекта в полупроводниковом контактном переходе и предназначенные как для работы с приложением внешнего напряжения, так и без него. Фотовольтаическим эффектом – (фотогальваническим, вентильным) – называют форму внутреннего фотоэффекта в полупроводниках со свойствами, неоднородными для движения фотоносителей даже при отсутствии внешнего напряжения, при которой оптически генерированные неравновесные носители заряда пространственно разделяются в объеме полупроводника вследствие его неоднородности, образуя при этом пространственно разделенные объемные заряды и, следовательно, разность потенциалов между участками облученного образца, называемую фото ЭДС (VF). Фотодиод представляет собой пластинку полупроводникового материала, внутри которого имеются области примесной электронной (n – область) и дырочной (p – область) проводимостей. Границу между этими областями называют контактным p-n переходом (рис. 6). Электронная и дырочная области снабжены невыпрямляющими контактами с присоединенными к ним выводами, с помощью которых осуществляется связь с внешней цепью. С целью предохранения чувствительного слоя фотодиода от воздействия внешней среды он покрывается лаком или монтируется в герметичном корпусе, изготовленном или из металла (со стеклянным входным окном) или из пластмасс.
Рис. 6. Принципиальная схема фотодиода. а) – направление светового пучка параллельно плоскости p – n перехода; б) – световой пучок и плоскость p – n перехода взаимно перпендикулярны. 1 – контакт n – области; 2 – контакт p – области; 3 – выводы; 4 – p – n переход.
3. Биполярные транзисторы. Полевые транзисторы. Тиристоры. Биполярный транзистор – это полупроводниковый прибор с двумя p-n– переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов), а управление протекающим через него током осуществляется с помощью управляющего тока. Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором. Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (p-n-p или n-p-n) и соответственно два p-n – перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод – коллектором. На рис. 7, а показано схематическое, упрощенное изображение структуры транзистора типа n-p-n и два допустимых варианта условного графического обозначения (рис. 7, б). Транзистор p-n-p устроен аналогично, упрощенное изображение его структуры дано на рис. 8, а. Более простой вариант условного графического обозначения – на рис. 8, б. Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна. Транзисторы типа n-p-n более распространены в сравнении с транзисторами типа p-n-p, так как обычно имеют лучшие параметры. Это можно объяснить тем, что основную роль в электрических процессах в транзисторах типа n-p-n играют электроны, а транзисторах типа p-n-p – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.
Рис. 7. Структура транзистора типа n-p-n (а) и его графическое обозначение (б)
Рис. 8. Структура транзистора типа p-n-p (а) и его графическое обозначение (б) Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора. Три схемы включения биполярного транзистора с ненулевым сопротивлением нагрузки. Транзисторы часто применяют для усиления переменных сигналов (которые при расчетах обычно считают синусоидальными), при этом в выходной цепи транзистора применяется нагрузка с ненулевым сопротивлением. Во входной цепи, кроме источника постоянного напряжения, необходимого для обеспечения активного режима работы, также используют источник входного переменного напряжения. Представим три характерные схемы включения транзистора. Схема с общей базой (ОБ) (рис. 9). Если сопротивление нагрузки достаточно велико, то амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх. Учитывая, что , можно утверждать, что схема не обеспечивает усиления тока, но усиливает напряжение. Входной ток такой схемы достаточно большой, а соответствующее входное сопротивление мало. Рис. 9. Схема включения транзистора с общей базой (ОБ)
Рис. 10. Схема включения транзистора с общим эмиттером (ОЭ) Схема с общим эмиттером (ОЭ) (рис. 10). Так как , а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх, следовательно, схема обеспечивает усиление и тока, и напряжения. Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой. Схема с общим коллектором (ОК) (рис. 11). При определении переменных составляющих токов и напряжений источники постоянного напряжения u1 и u2 заменяют закоротками (закорачивают). Рис. 11. Схема включения транзистора с общим коллектором (ОК) После этого к коллектору оказываются подключенными и источник входного напряжения uвх, и сопротивление нагрузки. Отсюда и название – схема с общим коллектором. Напряжение uбэ и особенно его переменная составляющая достаточно малы, поэтому амплитуда переменной составляющей напряжения uвх примерно равна амплитуде переменной составляющей напряжения uвых. Поэтому схемы с общим коллектором называют эмиттерным повторителем. Учитывая, что , можно отметить, что схема усиливает ток, но не усиливает напряжение. Схема отличается повышенным входным сопротивлением, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение как напряжения uбэ, так и напряжения uвых. На практике наиболее часто используется схема с общим эмиттером. h – параметры транзистора При определении переменных составляющих токов и напряжений (т. е. при анализе на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рис. 12). В четырехполюснике условно изображен транзистор с общим эмиттером. Рис. 12. Транзистор в виде четырехполюсника
Для разных схем включения транзистора токи и напряжения этого четырехполюсника обозначают различные токи и напряжения транзистора. Например, для схемы с общим эмиттером эти токи и напряжения следующие: i1 – переменная составляющая тока базы; u1 – переменная составляющая напряжения между базой и эмиттером; i2 – переменная составляющая тока коллектора; u2 – переменная составляющая напряжения между коллектором и эмиттером. Транзистор удобно описывать, используя так называемые h-параметры. Входное сопротивление транзистора для переменного сигнала (при закороченном выходе: u2 =0): . Аналогично - коэффициент обратной связи по напряжению. Режим работы при i1 =0 называют холостым ходом на входе. Далее - коэффициент передачи тока, - выходная проводимость. При этом , т. е. Коэффициенты hij определяются опытным путем. Параметры, соответствующие схеме с общим эмиттером, обозначаются буквой «э», а схеме с общей базой – буквой «б». Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвуют только основные носители. Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Устройство полевого транзистора. Схематическое изображение структуры полевого транзистора с управляющим переходом и каналом p -типа приведено на рис 13, а условное графическое обозначение этого транзистора – на рис. 14, а. Стрелка указывает направление от слоя p к слою n (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть меньше 1 мкм. Рис. 13. Структура полевого транзистора
Рис. 14. Графическое изображение полевого транзистора: а) с управляющим переходом и каналом p-типа; б) с управляющим p-n –переходом и каналом n-типа
Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя p (канала), поэтому область p-n– перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое p. Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим p-n– переходом и каналом n– типа. Его условное графическое обозначение представлено на рис. 14, б. Схемы включения транзистора. Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используют схемы с общим истоком (рис. 15).
Рис. 15. Схема включения полевого транзистора с общим истоком (ОИ) Так как в рабочем режиме , а , входными характеристиками обычно не пользуются. Например, для транзистора КП103Л для тока утечки затвора Iз.ут при t < 85°C выполняется условие . Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида , где f – некоторая функция. Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений): Uис.макс, Uзс.макс, Рмакс. Для транзистора КП103Л Uис.макс =10 В, Uзс.макс =15 В, Рмакс =120 мВт (все при t =85°С). Стокозатворные характеристики (характеристики передачи, передаточные, переходные, проходные характеристики). Стокозатворной характеристикой называют зависимость вида const, где f – некоторая функция. Такие характеристики не дают принципиально новой информации по сравнению с выходными, но иногда более удобны для использования. Для некоторых транзисторов задается максимальное (по модулю) допустимое отрицательное напряжение uзи, например, для транзистора 2П103Д это напряжение не должно быть по модулю больше чем 0, 5 В. Параметры, характеризующие свойства транзистора усиливать напряжение. Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора): . Обычно задается uзи =0. При этом для транзисторов рассматривается крутизна максимальная Для КП103Л S=1, 8…3, 8 мА / В при uис =0, t =20°C. Внутреннее дифференциальное сопротивление Rис.диф (внутреннее сопротивление) определяется выражением: . Для КП103Л при uис =10 В, uзи =0. Коэффициент усиления . Можно отметить, что . Для КП103Л при S =2 мА / В и Rис.диф =25 кОм М=2 (мА / В)· 25 кОм =50. Принципы управления параметрами электронного активного элемента, заложенные в полевых транзисторах, могут быть реализованы в более сложных электронных устройствах. К таким устройствам можно отнести ячейку памяти на основе полевого транзистора с изолированным затвором (флэш-память). Устройства флэш-памяти являются современными быстродействующими программируемыми постоянными запоминающими устройствами (ППЗУ) с электрической записью и электрическим стиранием информации (ЭСП-ПЗУ). Эти устройства являются энергонезависимыми, так как информация не стирается при отключении питания, выдерживают не менее 100 000 циклов записи/стирания. Одной из разновидностей приборов, реализующих принципы полевых транзисторов, являются полупроводниковые приборы с зарядовой связью (ПЗС). Приборы с зарядовой связью используются: в запоминающих устройствах ЭВМ; в устройствах преобразования световых (оптических) сигналов в электрические. Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n– переходов. Тиристор по принципу действия – прибор ключевого типа. Во включенном состоянии он подобен замкнутому ключу, а в выключенном – разомкнутому ключу. Те тиристоры, которые не имеют специальных электродов для подачи сигналов с целью изменения состояния, а имеют только два силовых электрода (анод и катод), называют неуправляемыми, или диодными, тиристорами (динисторами). Приборы с управляющими электродами называют управляемыми тиристорами, или просто тиристорами. Тиристоры являются основными элементами в силовых устройствах электроники, которые называют также устройствами преобразовательной техники (управляемые выпрямители, инверторы и т. п.). Существует большое количество различных тиристоров. Наиболее часто используют незапираемые тиристоры с тремя выводами, управляемые по катоду. Такие тиристоры содержат два силовых и один управляющий электрод и проводят ток только в одном направлении. Упрощенное изображение структуры тиристора представлено на рис. 16, а его условное графическое обозначение – на рис. 17. Обратимся к простейшей схеме с тиристором (рис. 18), где использованы следующие обозначения: · ia – ток анода (силовой ток в цепи анод-катод тиристора); · uak – напряжение между анодом и катодом; · iy – ток управляющего электрода (в реальных схемах используют импульсы тока); · uyk – напряжение между управляющим электродом и катодом; · uпит – напряжение питания.
Рис. 16. Структурная схема тиристора
Рис. 17. Графическое изображение тиристора
Рис. 18. Схема управления с применением тиристора
Предположим, что напряжение питания меньше так называемого напряжения переключения Uпер (uпит < Uпер) и что после подключения источника питания импульс управления на тиристор не подавался. Тогда тиристор будет находиться в закрытом (выключенном) состоянии. При этом ток тиристора будет малым (ia =0) и будут выполняться соотношения , (нагрузка отключена от источника питания). Если предположить, что выполняется соотношение uпит > Uпер или что после подключения источника питания (даже при выполнении условия uпит < Uпер) был подан импульс управления достаточной величины, то тиристор будет находиться в открытом (включенном) состоянии. При этом для всех трёх переходов будут выполняться соотношения , , (т. е. нагрузка оказалась подключенной к источнику питания). Существуют тиристоры, для которых напряжение Uпер больше 1 кВ, а максимально допустимый ток ia больше, чем 1 кА. Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления. Для выключения тиристора на практике не него подают обратное напряжение uак < 0 и поддерживают это напряжение в течение времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд. За это время избыточные заряды в слоях n1 и p2 исчезают. Для выключения тиристора напряжение источника питания uпит в приведенной выше схеме (см. рис. 6) должно изменить полярность. После указанной выдержки времени на тиристор вновь можно подавать прямое напряжение (uак > 0), и он будет выключенным до подачи импульса управления. Существуют и широко используются так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно (рис. 19). Условное графическое обозначение симистора показано на рис. 20.
Рис. 19 Рис. 20
|