Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Упрочнение колёсных пар твёрдыми сплавами
Проблема увеличения срока службы колесных пар весьма актуальна, так как потери, связанные с их ускоренным износом в масштабах МПС РФ, огромны и оказывают существенное влияние на экономику железнодорожных перевозок. На XI международном конгрессе по колесным парам (Париж, июнь 1995 г.) сообщалось о новой технологии их упрочнения, разработанной шведской фирмой ОУНОС совместно с железными дорогами Швеции (SJ) и Германии (ОВАО). По утверждению фирмы, данная технология замедляет износ колес в пять раз с одновременным снижением износа рельсов и уровня шума, излучаемого при движении подвижного состава. Стоимость технического обслуживания уменьшается на 25%. Это достигается путем лазерного расплавления поверхности и нанесения на нее частиц металлокерамических твердых сплавов, образующих плотно связанный раствор в металле колеса. Обработке подвергается полоса шириной 2 мм на участке непосредственного контакта колес с рельсами. Испытание упрочненных колес проводили на экспериментальном полигоне немецких железных дорог у вагонов поездов, перевозящих руду. Линия курсирования отличалась сложным планом и профилем. Нагрузка на ось составляла 25 тс, температура воздуха в зимнее время достигала - 40°С. Средний пробег упрочненных колес составил 150 тыс. км, а контрольных — 67 тыс. км. Особо следует подчеркнуть, что по оценке фирмы Oil HOC одновременно уменьшился износ рельсов. Данный результат является опровержением мнения противников любого варианта упрочнения колес, основанном на предположении, что с возрастанием их твердости увеличивается износ рельсов. Очевидно, что уменьшение их износа связано с использованием сплавов, имеющих наивысшую твердость после алмаза и карбидов тугоплавких металлов. Ассоциация американских железных дорог, ссылаясь на данные шведской фирмы Oil HOC, информирует, что технология лазерного упрочнения позволяет повысить стойкость колес в 10—50 раз. Цифры многократного увеличения износостойкости колесных пар вызывают определенные сомнения, тем более что ширина полосы упрочнения составляет всего 2 мм. Однако анализ данных, приведенных шведским концерном " Sandrik Coromant" по сравнительной износостойкости сталей и металлокерамических твердых сплавов развеивает эти сомнения (рис. 2.2.1.1.).
Рис. 2.2.1.1. Износостойкость различных материалов в зависимости от их твёрдости 1 - металлокерамические вольфрамокобальтовые твёрдые сплавы, 2 - металлокерамические вольфрамотитанокобальтовые твёрдые сплавы, 3 - циментированная сталь, 4 - закалённая и отпущенная сталь Испытания износостойкости предусматривали использование кремния, имеющего твердость 12009 МПа, т.е. такую же, как и кварц — главной абразивной составляющей пыли, воздействующей на все детали и механизмы. В результате установлено, что износостойкость твердых металлокерамических вольфрамокобальтовых сплавов в 20—30 раз выше, чем цементированной легированной стали. Анализ большого объема литературы по применению деталей из твердых сплавов указанного типа позволил составить таблицу. Из ее данных можно сделать вы вод, что детали, изготовленные из металлокерамических твердых сплавов при работе в экстремальных условиях (давление, наличие абразива, ударное воздействие, циклические нагрузки) показывают увеличение срока службы от 10—30 до 200—300 раз. Данные, приведенные на рис. 2.2.1.1, и в таблице 2.2.1.1, убедительно подтверждают обоснованность выводов фирмы DUROC о пятикратном увеличении износостойкости колесных пар с покрытиями из твердосплавных материалов. Рассмотрим и оценим различные способы нанесения на детали покрытий, содержащих металлокерамические твердые сплавы. Лазерные технологии пока не получили широкого распространения по причине высокой стоимости и сложности использования оборудования. Детонационное (взрывное) нанесение покрытий из твердых сплавов не обеспечивает достаточно прочного сцепления слоя с поверхностью изделия и соответственно не может быть использовано для нагруженных деталей. Плазменное напыление также не обеспечивает необходимой прочности сцепления слоя с поверхностью исходной детали, а наплавка приводит к разрушению (деструкции) частиц спеченных твердых сплавов, в результате чего они теряют свои уникальные свойства. Электроискровое упрочнение (легирование) представляет определенный интерес. Данный способ дает незначительный эффект, так как приводит к деструкции металлокерамических твердых сплавов, а наносимый слой имеет малую толщину (70 мкм). Производительность способа в 70—100 раз меньше других, в связи с чем, его целесообразно использовать для мелких деталей, тонких слоев, малых нагрузок и износов. При этом методе нет переноса с электрода на деталь даже очень мелких частиц твердого сплава, а наблюдается упрочнение поверхности соединениями и элементами, составляющими электродный материал, что приводит к повышению твердости легируемого слоя. Однако, как показали ходовые испытания, повышенная до 25% износостойкость сохраняется при весьма малом пробеге (16 тыс. км), т.е. до тех пор, пока не износился тонкий легированный слой.
Таблица 2.2.1.1 Эффективность применения деталей из твёрдых сплавов
Разработанный одним из авторов статьи способ армирования деталей частицами твердых сплавов основан на электроконтактной приварке частиц к поверхности металла регулируемыми импульсами тока. Способ был запатентован во многих странах (Япония, Италия, Франция и др.). Он обеспечивает прочное соединение твердосплавных частиц с основой (матрицей). Важными преимуществами при этом являются: исключение деструкции частиц твердых сплавов, обеспечение нужной толщины слоя в пределах 0, 1—1, 5 мм, экологическая чистота и благоприятные условия труда, а также практически полное использование дорогих присадочных материалов. Способ позволяет размещать частицы твердого сплава как в поверхностном (материал детали выполняет функции матрицы), так и в любом матричном слое. Применительно к упрочнению колесных пар армирование твердыми сплавами обеспечивает толщину слоя, соизмеримую с величиной припуска стружки, снимаемой при обточке. Это позволяет восстанавливать колесные пары с подрезанием упрочненного слоя и повторного многократного армирования (упрочнения). Износостойкость армированного слоя и самого твердого сплава, безусловно, отличаются, вследствие того, что первый содержит близкие по объему участки второго и соединяющей их стальной матрицы (рис. 2.2.1.2). [7]
Рис. 2.2.1.2. Износ подшипниковых материалов о поверхность, армированную твёрдым сплавом 1 - сталь, 2 - чугун, 3 - бабит, 4 - алюминий, 5 - твёрдый сплав, 6 - сталь 4, 5 чугун
|