Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Упражнения. 4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления ⇐ ПредыдущаяСтр 5 из 5
4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления. 4.2. Какие целые числа следуют за числами:
[ Ответ ] 4.3. Какие целые числа предшествуют числам:
[ Ответ ] 4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число? [ Ответ ] 4.5. Какое наибольшее десятичное число можно записать тремя цифрами: o а) в двоичной системе; o б) в восьмеричной системе; o в) в шестнадцатеричной системе? [ Ответ ] 4.6. В какой системе счисления 21 + 24 = 100? Решение. Пусть x — искомое основание системы счисления. Тогда 100x = 1 · x2 + 0 · x1 + 0 · x0, 21x = 2 · x1 + 1 · x0, 24x = 2 · x1 + 4 · x0. Таким образом, x2 = 2x + 2x + 5 или x2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5. 4.7. В какой системе счисления справедливо следующее: o а) 20 + 25 = 100; o б) 22 + 44 = 110? [ Ответ ] 4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы. [ Ответ ] 4.9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:
[ Ответ ] 4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы: а) 12510; б) 22910; в) 8810; г) 37, 2510; д) 206, 12510. [ Ответ ] 4.11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:
[ Ответ ] 4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа: а) 2СE16; б) 9F4016; в) ABCDE16; г) 1010, 10116; д) 1ABC, 9D16. [ Ответ ] 4.13. Выпишите целые числа: o а) от 1011012 до 1100002 в двоичной системе; o б) от 2023 до 10003 в троичной системе; o в) от 148 до 208 в восьмеричной системе; o г) от 2816 до 3016 в шестнадцатеричной системе. [ Ответ ] 4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую: [ Ответ ] 4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления. [ Ответ ] 4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления. [ Ответ ] 4.17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:
[ Ответ ] 4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы: [ Ответ ] 4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):
[ Ответ ] 4.20. Вычтите:
[ Ответ ] 4.21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:
[ Ответ ] 4.22. Разделите 100101102 на 10102 и проверьте результат, умножая делитель на частное. [ Ответ ] 4.23. Разделите 100110101002 на 11002 и затем выполните соответствующее десятичное и восьмеричное деление. [ Ответ ] 4.24. Вычислите значения выражений: o а) 2568 + 10110, 12 . (608 + 1210) - 1F16; o б) 1AD16 - 1001011002: 10102 + 2178; o в) 101010 + (10616 - 110111012) 128; o г) 10112 . 11002: 148 + (1000002 - 408). [ Ответ ] 4.25. Расположите следующие числа в порядке возрастания: o а) 748, 1100102, 7010, 3816; o б) 6E16, 1428, 11010012, 10010; o в) 7778, 1011111112, 2FF16, 50010; o г) 10010, 11000002, 6016, 1418. [ Ответ ] 4.26. Запишите уменьшающийся ряд чисел +3, +2,..., -3 в однобайтовом формате: o а) в прямом коде; o б) в обратном коде; o в) в дополнительном коде. [ Ответ ] 4.27. Запишите числа в прямом коде (формат 1 байт): а) 31; б) -63; в) 65; г) -128. [ Ответ ] 4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт): а) -9; б) -15; в) -127; г) -128. [ Ответ ] 4.29. Найдите десятичные представления чисел, записанных в дополнительном коде: а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000. [ Ответ ] 4.30. Найдите десятичные представления чисел, записанных в обратном коде: а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000. [ Ответ ] 4.31. Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:
[ Ответ ] Ответы — Раздел 4. Арифметические основы компьютеров 4.1. в) троичная: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201; г) пятеричная: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34. 4.2. а) 102; б) 1102; в) 10002; г) 100002; д) 1011002; е) 28; ж) 108; з) 408; и) 2008; к) 100008; л) 1016; м) 2016; н) 10016; о) 9AFA16; п) CDF016. 4.3. а) 12; б) 10012; в) 1112; г) 11112; д) 100112; е) 78; ж) 178; з) 778; и) 1078; к) 7778; л) F16; м) 1F16; н) FF16; о) A0F16; п) FFF16. 4.4. Четное двоичное число оканчивается цифрой 0, нечетное двоичное — цифрой 1, четное троичное — цифрами 0, 1 или 2. 4.5. а) 7; б) 511; в) 4091. 4.7. а) ни в какой; б) в шестеричной. 4.8. Основание 5. 4.9. а) 91; б) 183; в) 225; г) 35/64; д) 52, 75; е) 335; ж) 520; з) 668; и) 7/16; к) 8333/64; л) 31; м) 2748; н) 4112; о) 41/64; п) 47825/32. 4.10. а) 11111012; 1758; 7D16; б) 111001012; 3458; E516; в) 10110002; 1308; 5816; г) 100101, 012; 45, 28; 25, 416; д) 11001110, 0012; 316, 18; CE, 216. 4.11. а) 11767, 348; 13F7, 716; б) 1653, 5648; 3AB, BA16; в) 271, 5478; B9, B3816; г) 13634, 68; 179C, C16; д) 27, 76748; 17, FBC16; е) 1425, 628; 315, C816. 4.12. а) 10110011102; 13168; б) 10011111010000002; 1175008; в) 101010111100110111102; 25363368; г) 1000000010000, 0001000000012; 10020, 04018; д) 1101010111100, 100111012; 15274, 4728. 4.13. а) 1011012, 1011102, 1011112, 1100002; б) 2023, 2103, 2113, 2123, 2203, 2213, 2223, 10003; в) 148, 158, 168, 178, 208; г) 2816, 2916, 2A16, 2B16, 2C16, 2D16, 2E16, 2F16, 3016; 4.14. а) 4710 - 1011112 - 578 - 4710 - 578 - 1011112 - 2F16 - 4710 - 2F16 - 1011112 - 4710; б) 7910 - 10011112 - 1178 - 7910 - 1178 - 10011112 - 4F16 - 7910 - 4F16 - 10011112 - 7910. 4.15.
4.16.
4.17. а) 110101002; б) 10001, 02; в) 10101, 12; г) 11001, 12; д) 1348; е) 2248; ж) 24, 38; з) 348; и) 1916; к) 2516; л) 19, A16; м) 2616. 4.18. а) в 16-й; б) в 10-й; в) в 3-й; г) в 8-й; д) в 16-й. 4.19. в) А=9, B=4, C=5, D=3, F=1, L=0, M=7, N=8; г) A=3, B=6, C=2, D=5, E=9, F=7, G=1, H=0, I=4, J=8; д) A=9, B=3, C=4, D=2, E=1, F=8, G=0, H=7, I=6. 4.20. а) 11012; б) 1, 112; в) 1010, 12; г) -10, 012; д) 38; е) 338; ж) 22, 18; з) 11, 258; и) 1716; к) 1A9216; л) -1, 7E16; м) 4BBC16. 4.21. а) 111000012; б) 11000110, 012; в) 1000000, 1012; г) 1001011, 1012; д) 1748; е) 1428; ж) 15.268; з) 55.22228. 4.22. 11112. 4.23. 11001112; 10310; 1478. 4.24. а) 149310; б) 54210; в) 142010; г) 1110. 4.25. а) 1100102, 3816, 748, 7010; б) 1428, 10010, 11010012, 6E16; в) 1011111112, 50010, 7778, 2FF16; г) 11000002, 6016, 1418, 10010. 4.26. а) 00000011, 00000010, 00000001, 00000000, 10000001, 10000010, 10000011; б) 00000011, 00000010, 00000001, 00000000, 11111110, 11111101, 11111100; в) 00000011, 00000010, 00000001, 00000000, 11111111, 11111110, 11111101. 4.27. а) 00001111; б) 10111111; в) 01000001; г) невозможно. 4.28. Обратный: а) 11110110, б) 11110000, в) 10000000, г) невозможнo. Дополнительный: а) 11110111; б) 11110001; в) 10000001; г) 10000000. 4.29. а) -8; б) -101; в) -23; г) -128. 4.30. а) -23; б) -96; в) -84; г) -127. 4.31. Обратный: а) 00000111; б) 11111000; в) 11110011; г) 11100001; д) 00011001; е) 01111110; ж) переполнение; з) 10000000; и) невозможно. Дополнительный: а) 00000111; б) 11111001; в) 11110100; г) 11100010; д) 00011001; е) 01111110; ж) переполнение; з) 10000001; и) 10000000.
|