Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Рух об’ємного тіла в центральному полі






Нехай точкова маса нерухома в інерційній системі відліку. Тоді початок системи координат можна розмістити в . У процесі розрахунків, розглядаючи лише геометричні аспекти задачі, напруженість ґравітаційного поля зручніше характеризувати не посиланням на масу , яка це поле створює, а її ґравітаційним радіусом [11]:

. (2)

Таким чином, формулу (1) можна переписати у вигляді:

. (3)

Тут – фундаментальна швидкість, а – одиничний вектор уздовж радіус-вектора . Використання в (3) ґравітаційного радіуса має технічний характер і зовсім не пов’язане з підходами ЗТВ [11].

Нехай у ґравітаційному полі маси рухається точкове тіло масою . Якщо зв’язана з масою система відліку є інерційною, рівняння динаміки цієї матеріальної точки матиме вигляд [10]:

. (4)

Помноживши (4) векторно на , отримуємо рівняння обертального руху маси навколо точки :

. (5)

Можна довести [8], що ґравітаційне поле сферично-симетричного тіла збігається з полем точкової маси, поміщеної в центрі симетрії, а самі тіла взаємодіють за тими ж законами, що й точкові. Однак, якщо для матеріальної точки перехід від рівняння (4) до (5) не викликає жодних заперечень, то для об’ємного тіла згадана процедура виглядає сумнівною. Справді, рівняння (4) описує поступальних рух, а (5) – обертальний. Поступальний же рух по орбіті навколо силового центра , згідно з теоремою Л.Ейлера, складається [1] з двох обертальних рухів – орбітального та власного. При поступальному русі частота обертання навколо власної осі з точністю до знака збігається з частотою орбітального руху. Таким чином, рівняння (4) та (5) для об’ємного тіла нееквівалентні, бо (5) не враховує зумовленого орбітальним рухом кутового прискорення тіла навколо власної осі.

Пояснимо, як узгодити рівняння (4) поступального руху та рівняння обертального руху. Позначивши орбітальний момент імпульсу тіла через , а власний – через , згідно з законом збереження

(6)

у замкненій системі, матимемо:

. (7)

Застосовуючи для конкретизації характеристик обертального руху тіла навколо власної осі основний закон динаміки [8] обертального руху, отримаємо вираз для моменту сили (фіктивного), який діє на тіло:

. (8)

Тут – момент інерції тіла відносно власної осі. Для однорідного сферичного тіла діаметром

, де . (9)

Породжуючою причиною моменту сили є орбітальний рух, тому при переході від (4) до рівняння динаміки обертального руху вираз (5) необхідно доповнити моментом сили згідно з (7) та (8):

. (10)

Напрям момента сили перпендикулярний до площини орбіти, тому остання і надалі залишатиметься плоскою. Таким чином, при розгляді законів руху об’ємного тіла в центральному полі необхідно записувати [3]:

; (11)

Інтегруючи співвідношення (12), одержимо вираз:

. (13)

Для планет Сонячної системи числове значення співмножника близьке до одиниці (найбільше його відхилення від одиниці є в Юпітера – ), і його реєстрація практично неможлива. Зате вплив розміру планет накопичується у низці ефектів, наприклад, призводить до повороту перицентра орбіти.

Перейшовши в (11) від параметра до полярного кута , заміною змінних

(14)

із використанням зв’язку (13) рівняння (11) зведемо до вигляду:

. (15)

Будемо шукати розв’язок (15) за умови . У лінійному наближенні, приймаючи що [3]

, (16)

із (15) отримаємо рівняння гармонічного осцилятора

, (17)

відносна частота коливань якого відрізняється від одиниці. Фактично це означає, що перицентр орбіти об’ємної планети зміщується в прямому напрямі з частотою:

. (18)

Частота набагато менша від . Порівняємо з усередненою частотою повертання перицентра, формулу для якої дає ЗТВ [9]:

. (19)

Обчислене для планет Сонячної системи відношення

(20)

наведене в табл.1.

Таблиця 1

Планета Меркурій Земля Юпітер Сатурн
0, 008 0, 024 0, 57 0, 23

Із табл.1 видно, що для планет-гігантів складова швидкості зміщення перицентра орбіти, пов’язана з неточковістю планети, співмірна з обчисленою методами ЗТВ для точкових тіл. Навіть для Меркурія зміщення в 0", 4 за 100 років, як це випливає з (18), вже піддається реєстрації сучасними приладами.

У [3] знайдено формулу для обчислення швидкості зміщення перицентра в релятивістській механіці. Зважаючи, що тут нас цікавить не сама форма траєкторії, а лише швидкість повертання перицентра, ми пропонуємо знайдену за результатами цифрового моделювання розв’язку рівняння (39) евристичну формулу для обчислення останньої:

. (21)

Розбіжності між (19) та (21) зумовлені головним чином заміною на .

Миттєва швидкість повертання перицентра настільки мала в порівнянні з , що спостерігати її безпосередньо немає можливості. Астрономічні прилади дозволяють визначати лише її середні значення на великих проміжках часу. Тому що середнє за період обертання планети навколо Сонця значення , вираз (21) для обчислення усередненої швидкості повертання перицентра при за формою нагадує вираз (19). Такий результат підтверджує збудження власних обертальних рухів тіла відносно двох незалежних ступенів вільності.

У формулі (21) циклічна частота не є сталою, тому при обчисленні середнього значення необхідно враховувати періодичні зміни , коли ексцентриситет не є нульовим. Із формули (21) обчислимо середню за період руху по орбіті частоту повертання перицентра:

(22)

Аналіз причин відмінностей у формулах (19) та (22) для обчислення та – тема окремого дослідження. Вкажемо лише, що в ЗТВ повертання перицентра є суто нелінійним ефектом і отримати вираз для обчислення швидкості повертання перицетра технічно складніше, ніж у релятивістській механіці, де перше наближення трактується як розв’язок лінійного диференціального рівняння.

 

Якщо спробувати повернути вісь гіроскопа, то можна спостерігати своєрідне явище, яке називається гіроскопічним ефектом. Цей ефект проявляється в тому, що рух осі гіроскопа визначається не напрямом дії зовнішньої сили, а напрямом її моменту. Так, при дії пари сил, що намагаються повернути вісь гороскопа АА навколо осі СС, вона

повертається навколо осі ВВ. Така поведінка гіроскопа повністю пояснюється основним рівнянням динаміки обертального руху. Справді, момент пари сил М за час ∆ t спричиняє приріст моменту імпульсу гіроскопа на величину ∆ L=M∆ t, вектор якого паралельний вектору М і напрямлений вздовж осі СС від нас за рисунком. Тепер момент імпульсу гіроскопа Lᶦ =L+∆ L. Оскільки вісь гіроскопа АА повинна збігатися за напрямом з вектором Lᶦ, то гіроскоп здійснює поворот навколо навколо осі ВВ. Вісь обертання гіроскопа займає положення А₁ А₁. Якщо на гіроскоп тривалий час діє момент пари сил, то вісь гіроскопа повертатиметься доти, доки вектори Lᶦ і М не збігатимуться з напрямом.

Гіроскоп з досить великим моментом інерції, приведений у швидке обертання. Має великий момент імпульсу. Якщо на такий гіроскоп подіє короткочасно навіть значний момент сил, то зміна його моменту імпульсу буде незначною, а гіроскоп наче протидіятиме будь-яким спробам змінити модуль і напрям його моменту імпульсу. З цим пов’язана стійкість, яку має гіроскоп після приведення його в швидке обертання.

 

----------------------------------------------------------- 8 ------------------------------------------------------------------

 

Перетворення Лоренца це лінійні перетворення координат, що залишають незмінним просторово-часовий інтервал. Перетворення Лоренца зв’язують координати подій в різних інерціальних системах відліку та мають фундаментальне значення в фізиці. Інваріантність фізичної теорії відносно перетворень Лоренца, або релятивістська інваріантність, є необхідною умовою достовірності цієї теорії.

 

Принцип відносності - це фундаментальний фізичний принцип, що включає в себе наступні постулати:

1.Існують інерційльні системи відліку(СВ) - такі СВ в яких вільний рух (при якому на тіло не діє ніяка сила) відбувається рівномірно і прямолінійно

2.Всі закони природи однакові в інерційних СВ.

 

Відрізняють два принципи відносності:

- принцип відносності Галілея, в якому робиться припущення що взаємодія між тілами відбувається миттєво.Цей принцип лежить в основі класичної механіки, з нього також випливає що час абсолютний - він протікає однаково у будь-якій СВ

-принцип відносності Ейнштейна, в якому робиться припущення що взаємодія між тілами поширюється з скінченною швидкістю.Цей принцип лежить в основі СТВ, створеної Енштейном.Як наслідок, в цій теорії поняття абсолютного часу немає - одна і та ж подія відбувається(триває) різний час в різних СВ.

 

Перетворення Галілея — назва перетворень у класичній механіці, згідно з якими змінюються значення фізичних величин при переході між різними інерційними системами відліку.

Перетворення Галілея дозволяють описати фізичне явище в інерційній системі відліку якщо відомо як виглядає дане фізичне явище в іншій інерційній системі відліку.

Якщо осі координат у двох системах відліку мають одинакові напрямки, а одна система рухається вздовж осі y другої системи з постійною швидкістю V, то перетворення мають вигляд:

Інші величини, такі як прискорення, сила, маса при перетвореннях Галілея не змінюються. Відповідно, не змінюється вигляд рівнянь Ньютона. Говорять, що рівняння Ньютона інваріантні відносно перетворень Галілея.

 

Спеціальна теорія відносності (СТВ) — фізична теорія, опублікована Альбертом Ейнштейном 1905 року. Вона фактично замінює класичну механіку Ньютона, яка на той час була несумісною з рівняннями Максвелла з теорії електромагнетизму.

Спеціальна теорія відносності не поширює дію своїх принципів на гравітаційні сили, тому в 1916 році Ейнштейн опублікував нову — загальну теорію відносності, яка пояснювала природу гравітації.

1. Перший постулат (принцип відносності)

Всяка фізична теорія має бути незмінною математично для будь-якого інерціального спостерігача

Жодна з властивостей Всесвіту не може змінитись, якщо спостерігач змінить стан руху. Закони фізики залишаються однаковими для усіх інерціальних систем відліку.

2. Другий постулат (інваріантність швидкості світла)

Швидкість світла у вакуумі є однаковою для всіх інерціальних спостерігачів в усіх напрямах і не залежить від швидкості джерела випромінювання. Разом з першим постулатом, цей другий постулат еквівалентний тому твердженню, що світло не потребує жодного середовища (такого як ефір) для розповсюдження.

Теорія відносності робить висновок про те, що довжина будь-якого тіла зменшується в рухомій системі відліку в порівнянні з довжиною цього об'єкту в нерухомій системі. Якщо довжина тіла в нерухомій системі дорівнює l0, то його довжина в рухомій ситемі

 

де v - швидкість рухомої системи, c - швидкість світла. Це явище називається лоренцовим скороченням.

 

В спеціальній теорії відносності проміжок часу між двома подіями залежить від системи відліку, тобто є відносним. Якщо для спостерігача в непорушній системі відліку дві події відбулися в одній точці простору через проміжок часу t0, то для спостерігача, який рухається зі швидкість v відносно нерухомої системи відліку, ці події відбудуться через час

 

 

де c - швидкість світла у вакуумі. Космічний мандрівник, який відлітає до далекої зірки на зорельоті зі швидкістю, близькою до швидкості світла, й повертається на Землю, буде молодшим, ніж люди, що залишалися на рідній планеті (дивіться Парадокс близнят).

 

------------------------------------------------------- 9 ----------------------------------------------------------------

.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.