Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами!
Радиотелескопы[12] «Радиоволны, распространяющиеся в космич. пространстве, могут быть зарегистрированы наземными приемниками в диапазоне частот от ГГц (см). Радиоволны с м не проходят (поглощаются или отражаются) через ионосферу Земли. Наблюдения в этом диапазоне могут проводится радиотелескопами, вынесенными за пределы атмосферы. Радиоволны с см поглощаются молекулами атмосферных газов. Однако эта граница атмосферного " радиоокна" не резкая. Она представляет собой ряд интервалов прозрачности и полупрозрачности между полосами поглощения молекул, что позволяет проводить наблюдения на некоторых волнах миллиметрового диапазона, в частности вблизи длин волн 8, 4 и 2, 6 мм. Радиоастрономич. наблюдения, в отличие от оптических, можно проводить и в облачную погоду, т.к. атмосферные условия слабо влияют на прохождение радиоволн (кроме коротковолнового сантиметрового и миллиметрового диапазонов).Радиоастрономич. обсерватории оснащены большими радиотелескопами, основой которых явл. специально сконструированные и построенные антенны или комплексы антенн. Они снабжены набором высокочувствит. приемных устройств - радиометров, а также спец. многоканальными приемниками излучения для целей радиоспектроскопии в различных радиолиниях, устройствами для исследования линейной и круговой поляризации радиоволн. В радиоастроонмич. эксперименте широко применяются ЭВМ, облегчающие процесс регистрации принимаемого радиоизлучения и, главное, обработки данных наблюдений. Отдельно взятый радиотелескоп не может " перекрыть" весь диапазон радиоволн в к-ром ведутся радиоастрономич. исследования. В длинноволновой области (декаметровые, метровые волны) применяются, как правило, сложные антенны, " набранные" из многих десятков и сотен элементов (напр., диполей). В дециметровом и сантиметровом диапазонах длин волн с успехом используются большие полу- и полноповоротные параболич. антенны. Антенны этого типа применяются и в миллиметровом диапазоне, но требованияк точности изготовления зеркал здесь выше.Т.о., исследование космич. радиоизлучения во всем диапазоне явл. задачей, решение к-той возможно лишь с использованием многих радиотелескопов различных обсерваторий мира. Это требует координации и кооперации работы радиоастрономов многих стран, эффективного обмена научной информацией, т.е. тесного международного сотрудничества.Если бы " радионебо" можно было видеть так же, как мы видим в ясную ночь звездное небо, нам представилась бы картина, существенно отличающаяся от той, к-рая наблюдается в световых лучах. Мы увидели бы более широкую (в 2-3 раза) яркую полосу вдоль Млечного Пути со значит. увеличением яркости в галактическом центре (в оптич. излучении центр ненаблюдаем из-за сильного поглощения света межзвездной пылью). Все небо было бы усеяно " радиозвездами" и протяженными туманностями различной яркости. При сопоставлении вида неба в световых и радиолучах мы обратили бы внимание на странное, на первый взгляд, несоответствие: на месте многих оптически ярких звезд не было бы видно даже слабых " радиозвезд", в то время как нек-рые оптически слабые объекты, невидимые невооруженным глазом, в радиолучах были бы очень яркими. При помощи сильного оптич. телескопа на месте нек-рых ярких " радиозвезд" мы увидели бы далекие туманности и слабые звездобразные объекты - галактики и квазары. Самым ярким объектом " радионеба" остается Солнце (из-за близости к нам). Однако мощность его радиоизлучения в миллионы раз меньше оптического. Это сравнение показывает, насколько слабо, вообще говоря, радиоизлучение космоса и почему его интенсивное исследование стало возможным лишь после создания гигантских высокочувствит. радиотелескопов. Вторым по потоку радиоизлучения источником явл. галактич. туманность в созвездии Кассиопеи (радиоисточник Кассиопея А) - остаток вспышки сверхновой звезды. Но уже следующим по наблюдаемому потоку излучения объектом явл. радиоисточник в созвездии Лебедя, отождествляемый с далекой (расстояние ок. 200 Мпк) слабой (16-й звездной величины) туманностью (радиогалактика Лебедь А). Абсолютное большинство наиболее мощных радиоисточников на " радионебе" - внегалактич. объекты (радиогалактики и квазары).Непрерывное радиоизлучение явл. излучением больших ансамблей заряженных частиц (прежде всего электронов). Быстро и хаотически меняющийся во времени " радиошум" " размазан" по широкому интервалу радиочастот, т.е. имеет непрерывный частотный спектр. Одна из задач радиоастрономич. исследований - определение спектр. распределения потока энергии, приносимого радиоволнами от космич. объектов. Спектр. состав радиоизлучения - важная характеристика механизма излучения. Осн. механизмами непрерывного радиоизлучения явл. тормозное излучение, магнитотормозное излучение и (в т.ч.синхротронное излучение). Осн. механизм радиоизлучения в линиях связан с переходами между уровнями энергии атомов и молекул.Другой, более сложной, задачей Р. явл. исследование структуры радиоисточников. Если ширина диаграммы направленности радиотелескопа больше угловых размеров источника, она решается с помощью сложных многоантенных радиоинтерферометров. Разрешение деталей структуры размером от секунды до неск. десятков секунд дуги осуществляется системами апертурного синтеза. Напр., система VLA (США) позволяет получать на длинах волн сантиметрового диапазона радиоизображения с разрешением до 0, 6" -1, 0", что соответствует разрешающей способности самых больших наземных оптич. телескопов. В тысячу раз более высокое разрешение структуры источников радиоизлучения (до десятых долей миллисекунды дуги) достигается методом радиоинтерферометрии со сверхдлинными базами. Этим методом изучаются компактные образования в ядрах галактик и квазаров, источники мазерного излучения в линиях молекулы H2O (см).Помимо спектров излучения и структуры радиоисточников исследуются также поляризация излучения, распределение поляризов. излучения по видимой структуре источников (рис. 4). Это позволяет получать данные о структуре магн. полей, а также (на основе Фарадея эффекта) о св-вах среды (напр., о плотности плазмы как в области формирования излучения, так и на пути его распространения).Радиоизлучение многих космич. объектов переменно с различными характерными временами. Разнообразны, напр., явления переменности радиоизлучения активного Солнца, Юпитера, пульсаров. Наконец, обнаружена и всесторонне изучается переменность радиоизлучения на сантиметровых и дециметровых длинах волн многих внегалактических объектов (радиогалактик и квазаров).Важным направлением Р. явл. радиоспектроскопия - исследование излучения космич. объектов в различных радиолиниях, таких, как радиолиния 21 см нейтрального водорода, влиниях возбужденного водорода, в линиях OH (см), воды H2O (см) и многих др. молекул» Данная страница нарушает авторские права? |