Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Спектры периодических сигналов






Периодических сигналов, естественно, не существует, т.к. любой реальный сигнал имеет начало и конец. Однако при анализе сигналов в установившемся режиме можно исходить из предположения, что они существуют бесконечно долго, и принять в качестве модели таких сигналов периодическую функцию времени.

Пусть функция u (t) задана в интервале времени t 1 £ t £ t 2 и удовлетворяет условиям Дирихле (на любом конечном интервале функция должна быть непрерывной или иметь конечное число точек разрыва первого рода, а также конечное число экстремальных точек). В точках разрыва t 0 функцию u (t) следует считать равной u (t 0) = Ѕ [ u (t 0 + 0) + u (t 0 – 0)], период повторения ; [ - ¥ £ t £ + ¥ ].

Если в качестве базисных выбраны экспоненциальные функции, то выражение (1.5) запишем в виде ряда Фурье в тригонометрической форме:

U (t) = . (1.9)

Функцию A (k w1) принято называть спектром периодического сигнала U (t). Этот спектр дискретный, т.к. функция A (k w1) определена на числовой оси только для целых значений k. Значения функции A (k w1) при конкретном k называют амплитудой. Модуль спектра A (k w1) называют спектром амплитуд, а функцию φ (k ω 1) – спектром фаз. Поскольку A (k w1) и φ (k ω 1) отличны от нуля только при целых k, спектры амплитуд и фаз периодического сигнала – дискретные.



Если известны спектр амплитуд и спектр фаз сигнала, то в соответствии с выражением (1.9) он восстанавливается однозначно. В практических приложениях более значимым является спектр амплитуд, а информация о фазах составляющих часто несущественна (кроме случаев с применением фазовой модуляции сигнала).

Отдельные составляющие в (1.9) называют гармониками. Спектр амплитуд и спектр фаз гармонического сигнала удобно представлять наглядно в виде спектральных диаграмм. На диаграмме спектра амплитуд каждой гармонике ставится в соответствие вертикальный отрезок, длина которого пропорциональна амплитуде, а расположение – частоте этой составляющей. Спектр периодического сигнала характеризует совокупность гармоник, кратных основной частоте w1. Аналогично на диаграмме спектра фаз обозначают значения фаз гармоник. Эти спектры отображаются совокупностями линий и носят название линейчатых.

 
Рис. 4. Последовательность гармоник, описывающая прямоугольный импульс Рис.5. Диаграмма спектра амплитуд произвольного импульса

На рис.4 приведен пример использования обобщенной спектральной теории сигналов и ортогонального представления тригонометрических базисных функций в частотной форме для описания прямоугольного импульса первыми четырьмя гармониками. Суммарный импульс отличается от прямоугольного в основном недостаточной крутизной фронтов. Введение в математическое описание более высоких гармоник ликвидирует это отличие.

На рис. 5 показан линейчатый спектр амплитуд некоторого импульса произвольной формы (не прямоугольного).

21) Соотношения между длительностью импульсов
и шириной их спектров

Спектр одиночного прямоугольного импульса при увеличении его длительности t от 0 до ¥ сокращается от безграничного у дельта-функции до одной спектральной линии в начале координат (постоянное значение сигнала). Это свойство сокращения ширины спектра сигнала (при увеличении его длительности и наоборот) справедливо для сигналов любой формы. Оно вытекает непосредственно из особенностей прямого и обратного интегральных преобразований Фурье.

Спектр укороченного в l раз сигнала ровно в l раз шире. Коэффициент изменяет только амплитуду гармонических составляющих и на ширину спектра не влияет.

Другой важный вывод: длительность сигнала и ширина его спектра не могут быть одновременно ограничены конечными интервалами; если длительность сигнала ограничена, то спектр его неограничен, и наоборот, сигнал с ограниченным спектром длится бесконечно долго. Справедливо соотношение

D t D f = C, (1.10)

где D t – длительность импульса;

D f – ширина спектра импульса;

C – постоянная величина, зависящая от формы импульса (при ориентировочных оценках C = 1).

Реальные сигналы ограничены во времени, генерируются и передаются устройствами, содержащими инерционные элементы (емкости и индуктивности), поэтому не могут содержать гармоники сколь угодно высоких частот.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.