Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дофамин






Дофамин относится к катехоламинам. Дофаминергические нейроны встречаются в трех отделах головного мозга: черной субстанции (ее компактной части), покрышке среднего мозга и в различных ядрах гипоталамуса (рис. 3.30). В периферической нервной системе его практически нет.

 

Рис. 3.30. Схема распределения в головном мозге нейронов, вырабатывающих дофамин, и распределение их аксонов: 1 — покрышка среднего мозга; 2 — черная субстанция среднего мозга; 3 — кора больших полушарий; 4 — ядра гипоталамуса; 5 — полосатое тело

Нейроны черной субстанции направляют аксоны к конечному мозгу, где образуются синапсы на клетках полосатого тела (скорлупа и хвостатое ядро, относящиеся к базальным ганглиям). Функция этих проекций состоит в поддержании общего уровня двигательной активности, обеспечении точности выполнения моторных программ, устранении непроизвольных движений. В случае дегенерации черной субстанции развивается заболевание — паркинсонизм. Его основные симптомы состоят в затрудненном запуске движений (акинезия), патологически усиленном мышечном тонусе (ригидность), дрожании пальцев и головы (тремор). На начальной стадии заболевания преобладает один из симптомов; позже они комбинируются, образуя характерный комплекс двигательных нарушений.

Болезнь обычно прогрессирует в течение 10—20 и более лет. Причины дегенерации могут быть различными: генетические аномалии, образование токсических продуктов окисления дофамина, нарушение функции нейроглии и др. Известно, что риск развития паркинсонизма увеличивается с возрастом, а также в результате различных экстремальных воздействий на ЦНС (механические удары, отравления, клиническая смерть).

Препараты, применяемые для лечения паркинсонизма, не устраняют его причин, а лишь облегчают тяжесть состояния, ослабляют симптоматику. Они делятся на две группы. К первой относятся антагонисты центральных никотиновых и мускариновых рецепторов (например, циклодол и акинетон). Снижая активность ацетилхолинергических интернейронов полосатого тела, они способны значительно ослабить тремор.

Вторая группа препаратов — это L-ДОФА (L-диоксифенилаланин) и его производные (табл. 3.2).

Таблица 3.2 ПСИХОТРОПНЫЕ ПРЕПАРАТЫ, ВОЗДЕЙСТВУЮЩИЕ НА ДОФАМИНЕРГИЧЕСКУЮ СИСТЕМУ  
Препарат Механизм действия, применение
L-ДОФА Препарат для лечения болезни Паркинсона
Апоморфин D1-, D2-агонист
Бромкриптин D2 -агонист
Фенамин, амфетамины Стимуляторы выброса дофамина
Кокаин Блокатор обратного захвата
Аминазин Антагонист дофаминовых и норадреналиновых рецепторов, нейролептик
Галоперидол D2 -антагонист, нейролептик

L-ДОФА является непосредственным предшественником дофамина в цепочке синтеза катехоламинов, а также хорошо проходит гематоэнцефалический барьер. Превращаясь в дофамин непосредственно в базальных ганглиях, он восполняет недостаток медиатора, возникший в результате дегенерации черной субстанции. Влияние препарата распространяется преимущественно на симптомы ригидности и акинезии.

Проекции нейронов покрышки направляются к корковым областям, обонятельной (древней) коре, гиппокампу, ассоциативной лобной, премоторной, моторной, зрительной коре, часть аксонов контактирует с ядрами миндалины. Существование этой системы позволяет на структурном уровне подтвердить участие дофамина в поддержании не только общего уровня бодрствования мозга, но и тонуса высших центров, связанных с сенсорным восприятием, управлением движениями, памятью, эмоциями.

Дофаминергические нейроны гипоталамуса обладают короткими аксонами; они формируют три вида проекций: к субталамическим ядрам, нейроэндокринным зонам и потребностно-мотивационным центрам гипоталамуса.

В первом случае речь идет о регуляции общей интенсивности локомоции (т. е. ритмических движений, связанных с перемещениями в пространстве). Именно субталамические ядра отдают команду о начале локомоции, ее ускорении, переходе с шага на бег.

Второй тип проекций подразумевает влияние на уровень активности нейроэндокринных ядер самого гипоталамуса, а также гипофиза. Примером может служить тормозящее влияние дофамина на секрецию гормона пролактина.

Третий тип проекций отвечает за тормозящее влияние дофамина на различные биологически значимые потребности: пищевую, половую, оборонительную. Параллельно могут возникать положительные эмоциональные переживания (действие на центр положительного подкрепления гипоталамуса).

 

 
Рис. 3.31. Схема эффектов дофаминергической системы в норме и патологии

Несмотря на многообразие эффектов (рис. 3.31), наиболее очевидной задачей дофаминергической системы является регуляция двигательных функций. Управление возможно на уровне коры (ассоциативной и моторной), базальных ганглиев, субталамуса. В продолговатом мозге одна из врожденных моторных реакций — рвотный рефлекс также находится под контролем этой медиаторной системы. Эмоции, возникающие при активации дофаминергических синапсов, часто связаны с движениями: удовольствие, получаемое от танца и выполнения сложного спортивного упражнения, чувство гибкости и легкости, радость от снятия усталости.

Синтез дофамина протекает так же, как и норадреналина, но в дофаминергических нейронах цепочка химических превращений тирозина останавливается на одно звено раньше. Далее происходит перенос медиатора в везикулы и выброс в синаптическую щель по мере надобности.

В настоящее время обнаружено пять типов рецепторов к дофамину; все они являются метаботропными и связаны с аденилатциклазой. Наиболее распространены и важны первый и второй типы, названные соответственно D1-рецепторы и D2-peцепторы.

D1-рецепторы составляют около 3/4 всех дофаминовых рецепторов, их действие реализуется через активацию аденилатциклазы и рост синтеза цАМФ. У человека больше всего D1-рецепторов в полосатом теле; много их в бледном шаре, миндалине, новой коре, гиппокампе. D1-рецепторы примерно в 10 раз чувствительнее к дофамину, чем D2-рецепторы. Вместе с тем их блокада нейролептиками наступает при использовании доз в 100—1000 раз больших, чем в случае D2-рецепторов.

D2-рецепторы составляют около 1/5 всех дофаминовых рецепторов. Их влияние реализуется через торможение аденилатциклазы и снижение синтеза цАМФ. Больше всего D2-рецепторов также в полосатом теле; далее следуют бледный шар, миндалина, гиппокамп, таламус и новая кора. Несмотря на меньшее количество, роль D2-рецепторов в ЦНС очень важна. Именно через них реализуется влияние большинства нейролептиков. Описано взаимодействие D1- и D2-рецепторов: стимуляция первых усиливает последствия специфической активации вторых.

Агонисты дофаминовых рецепторов не всегда проявляют специфичность по отношению к D1 и D2-типам. Таков апоморфин, используемый как препарат, вызывающий рвоту и применяемый при пищевом отравлении (когда промывание желудка провести невозможно), а также для выработки условно-рефлекторной отрицательной реакции на алкоголь (при лечении алкоголизма).

Избирательный агонист D2-рецепторов бромокриптин (синоним — парлодел) применяется для подавления послеродовой лактации. Предложен он и для использования при паркинсонизме, а также для ослабления двигательных нарушений, вызываемых нейролептиками.

Первым нейролептиком стал аминазин (иначе — хлорпромазин), открытый в начале 50-х годов. Применение нейролептиков позволяет контролировать самые сложные типы психопатологии — психозы, часто сопряженные с опасностью больного для окружающих и самого себя (сильное возбуждение, в том числе маниакальное; агрессия, страхи, расстройства сознания), поэтому второе название нейролептиков — антипсихотические препараты.

Аминазин и сходные с ним соединения относятся к химической группе фенотиазинов и являются антагонистами дофаминергических и центральных норадренергических рецепторов. В связи с этим, кроме ослабления психотических проявлений, они вызывают также характерное снижение общего уровня активности ЦНС: введение аминазина вызывает уменьшение двигательной активности, эмоциональную тупость (индифферентность), запоздалые реакции на внешние стимулы, однако не наблюдается помрачения сознания и нарушения мышления. Большие дозы фенотиазинов создают фон для развития дремотного состояния, они способны вызвать депрессию и двигательные расстройства, сходные с проявлениями паркинсонизма.

Следующим шагом в поисках более избирательных нейролептиков стало открытие бутирофенонов, представителем которых является галоперидол — специфический антагонист D2-рецепторов. Его избирательность позволяет эффективно блокировать маниакальные состояния и острый бред, не вызывая у больных состояния вялости и апатии. Вместе с тем могут проявляться сходные с паркинсоническими двигательные расстройства, что требует соответствующей фармакологической коррекции (например, с помощью циклодола).

Существуют и другие группы нейролептиков, обладающие более «мягким» действием. Выбор конкретного препарата зависит от тяжести патологии, ее остроты, необходимости хронического или периодического применения, индивидуальной переносимости.

С данными о преимущественно дофаминергической природе активности нейролептиков перекликаются и представления о важной роли данной медиаторной системы в развитии шизофрении: посмертный анализ мозга больных показывает значительное увеличение связывания антагонистов дофамина в различных структурах переднего мозга, что обусловлено повышением плотности дофаминовых рецепторов D2 и D4. Следовательно, происходящие при шизофрении изменения, не затрагивая процессы синтеза и выброса дофамина, значительно (избыточно) повышают чувствительность к нему постсинаптической мембраны.

Особую группу психотропных препаратов составляют вещества, стимулирующие выброс дофамина из пресинаптического окончания, в связи с чем уровень возбуждения ЦНС усиливается, уменьшается чувство утомления и потребность в сне, улучшается настроение, ощущается прилив сил. Все это позволило отнести препараты данной группы к психомоторным стимуляторам. Их наиболее известным представителем является фенамин (сульфат амфетамина). Амфетамины усиливают выброс не только дофамина, но и норадреналина, а также ослабляют их обратный захват.

Войдя в медицинскую практику в начале века, амфетамины использовались для лечения ожирения (как средства, снижающие аппетит) и нарколепсии (болезни, при которой человек неконтролируемо засыпает). Во время Второй мировой войны они широко применялись как стимуляторы. Сейчас амфетамины используются в медицине редко, поскольку формирование привыкания и зависимости возникает примерно через 2 месяца. Кроме того, по механизму действия они не устраняют необходимости в отдыхе, а лишь позволяют использовать резервные силы организма, что быстро ведет к физическому и психическому истощению. Наконец, существует значительное количество побочных эффектов на уровне сердечно-сосудистой и эндокринной систем.

Более мягким действием по сравнению с амфетаминами обладает психомоторный стимулятор сиднокарб, усиливающий деятельность в основном норадренергических структур ЦНС; его используют при астенических состояниях, абстинентных синдромах, задержках умственного развития у детей, после травм и инфекций головного мозга. В настоящее время он практически полностью заменил фенамин.

Амфетамины же из разряда лекарств перешли в последние десятилетия в разряд допингов и наркотических препаратов. Первый всплеск употребления амфетаминов пришелся на 50-е (Япония, Швеция) и 60-е (США) годы. Употребление амфетаминов сначала вызывает ощущение физического благополучия, уверенности в себе; по мере привыкания человек вынужден увеличивать и учащать приемы препарата, переходить от таблеток к инъекциям, затем наблюдаются психотические проявления (рост агрессивности, ощущение постоянной угрозы извне), все более усиливается абстинентный синдром (синдром отмены). В случае отказа от приема длительность только острого периода абстинентного синдрома может составлять 2—3 месяца, часто происходит переход к «тяжелым» наркотикам — морфину и героину.

Отдельной группой наркотических препаратов являются метиловые амфетамины («экстази» и др.), по механизмам действия более близкие к галлюциногенам (см. следующую главу).

Кокаин — алкалоид, содержащийся в листьях южноамериканского кустарника Erythroxylon coca. Его ярко выраженное влияние на нервную систему включает два компонента — местноанестезирующий и центральный. Как местный анастетик, кокаин применяется в практике отоларингологов при небольших операциях, не получая широкого распространения из-за высокой токсичности. Используется он и при операциях на роговице.

В ЦНС кокаин функционирует как блокатор обратного захвата дофамина, в результате чего его эффекты оказываются сходными с эффектами амфетаминов. Еще в конце XIX века в аптеках свободно продавались стимулирующие вина и тоники из коки, однако в начале XX века за распространением кокаина был установлен строгий контроль. Причиной этого стали многочисленные случаи развития кокаиновой зависимости. В 70-е годы на наркотическом рынке появился сравнительно дешевый кокаин, производимый в Колумбии и ряде других стран. Кроме того, была изобретена особо активная форма кокаина, предназначенная для курения, — «крэк». Все это привело к тому, что сегодня кокаин превратился в один из самых опасных и распространенных наркотиков.

Попадая в организм через дыхательные пути, кокаин вызывает очень сильные и приятные ощущения, имеющие, однако, небольшую длительность, т. е. по сравнению с амфетаминами он действует сильнее, но более короткое время. Влияние малых доз кокаина и амфетаминов сходно еще в большей степени. В случае кокаина гораздо выше опасность передозировки; более выражен психологический компонент зависимости; менее ярок — физиологический. Амфетамины, как и кокаин, истощают пресинаптические запасы дофамина: первые — усиливая выброс медиатора; второй — не давая ему возвращаться в везикулы. В последнем случае значительная часть дофамина распадается прямо в синаптической щели.

 
Рис. 3.32. Схема регуляции деятельности дофаминергического синапса: 1 — везикулы с дофамином; 2 — постсинаптический рецептор; 3 — белок-насос, осуществляющий обратное всасывание дофамина; 4 — пресинаптический рецептор

В норме инактивация дофамина (рис. 3.32) осуществляется тем же способом, который описан для норадреналина (обратный захват, а затем повторная загрузка в везикулы либо разложение с помощью МАО). Отличие состоит в функции пресинаптических рецепторов. В случае дофамина их включение тормозит активность синапса, т. е. уменьшает дальнейший выброс медиатора. Этот механизм позволяет нервным клеткам экономно расходовать запасы дофамина, но подразумевается, что чувствительность пре- и постсинаптических рецепторов к дофамину тонко сбалансирована. Смещение этого баланса, вероятно, является причиной некоторых видов шизофрении, при которых пресинаптические рецепторы «опаздывают» с торможением выброса медиатора, поэтому оказывается полезным введение специфических агонистов пресинаптических рецепторов (например, апоморфина в малых дозах). С другой стороны, блокада пресинаптических рецепторов галоперидолом может увеличивать активность дофаминергической передачи (особенно если на постсинаптической мембране находится минимальное количество D2-рецепторов).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.