Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Алгоритм 6. Быстрая сортировка
Теперь переходим к самому интересному, а именно к одной из самых быстрых и эффективных из известных сортировок, которая так и называется — «быстрая сортировка». Как и в сортировке слиянием, массив разбивается на две части, с условием, что все элементы первой части меньше любого элемента второй. Потом каждая часть сортируется отдельно. Разбиение на части достигается упорядочиванием относительно некоторого элемента массива, т. е. в первой части все числа меньше либо равны этому элементу, а во второй, соответственно, больше либо равны. Два индекса проходят по массиву с разных сторон и ищут элементы, которые попали не в свою группу. Найдя такие элементы, их меняют местами. Тот элемент, на котором индексы пересекутся, и определяет разбиение на группы. Классическая реализация алгоритма выглядит так:
Что же делает данный алгоритм таким быстрым? Ну во-первых, если массив каждый раз будет делится на приблизительно равные части, то для него будет верно то же соотношение, что и для сортировки слиянием, т. е. время работы будет O(nlog2n). Это уже само по себе хорошо. Кроме того, константа при nlog2n очень мала, ввиду простоты внутреннего цикла программы. В комплексе это обеспечивает огромную скорость работы. Но как всегда есть одно «но». Вы, наверное, уже задумались: а что если массив не будет делится на равные части? Классическим примером является попытка «быстро» отсортировать уже отсортированный массив. При этом данные каждый раз будут делиться в пропорции 1 к n-1, и так n раз. Общее время работы при этом будет O(n2), тогда как вставкам, для того чтобы «понять», что массив уже отсортирован, требуется всего-навсего O(n). А на кой нам сортировка, которая одно сортирует хорошо, а другое плохо? А собственно, что она сортирует хорошо? Оказывается, что лучше всего она сортирует случайные массивы (порядок элементов в массиве случаен). И поэтому нам предлагают ввести в алгоритм долю случайности. А точнее, вставить randomize и вместо r: =A[p]; написать r: =A[random(q-p)+p]; т. е. теперь мы разбиваем данные не относительно конкретного, а относительно случайного элемента. Благодаря этому алгоритм получает приставку к имени «вероятностный». Особо недоверчивым предлагаю на своем опыте убедится, что данная модификация быстрой сортировки сортирует любые массивы столь же быстро. А теперь еще один интересный факт: время O(nlog2n) является минимальным для сортировок, которые используют только попарное сравнение элементов и не использует структуру самих элементов. Тем, кому интересно, откуда это взялось, рекомендую поискать в литературе, доказательство я здесь приводить не намерен, не Дональд Кнут, в конце концов: -). Но вы обратили внимание, что для рассмотренных алгоритмов в принципе не важно, что сортировать — такими методами можно сортировать хоть числа, хоть строки, хоть какие-то абстрактные объекты. Следующие сортировки могут сортировать только определенные типы данных, но за счет этого они имеют рекордную временную оценку O(n).
|