Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Ррадиоактивный распад
Под радиоактивным распадом, или просто распадом, понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникающее ядро — дочерним. выражает закон радиоактивного распада. где N 0 — начальное число нераспавшихся ядер (в момент времени t =0), N— число нераспавшихся ядер в момент времени t. Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения: где Х — материнское ядро, Y — символ дочернего ядра, Не — ядро гелия (a -частица), е— символическое обозначение электрона (заряд его равен –1, а массовое число — нулю). 46. Примером a -распада служит распад изотопа урана 238U с образованием Th: Скорости вылетающих при распаде a --частиц очень велики и колеблются для разных ядер в пределах от 1, 4× 107 до 2× 107 м/с, что соответствует энергиям от 4 до 8, 8 МэВ. Для a -распада характерна сильная зависимость между периодом полураспада T 1/2 и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера — Нэттола зависимости между пробегом Ra (расстоянием, проходимым частицей в веществе до ее полной остановки) a -частиц в воздухе и постоянной радиоактивного распада l: (257.1) где А и В— эмпирические константы, l = (ln 2)/ T 1/2. Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им a -частиц. 47. Явление b –-распада подчиняется правилу смещения и связано с выбросом электрона. b - электрон рождается в результате процессов, происходящих внутри ядра. при b –-распаде вместе с электроном испускается еще одна нейтральная частица — нейтрино. Нейтрино имеет нулевой заряд, спин 1/2 (в единицах ) и нулевую (а скорее < 10–4 тe) массу покоя; обозначается . Впоследствии оказалось, что при b –-распаде испускается не нейтрино, а антинейтрино (античастица по отношению к нейтрино; обозначается ). 48. Экспериментально установлено, что g -излучение не является самостоятельным видом радиоактивности, а только сопровождает a - и b -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g -Спектр является линейчатым. g -Спектр — это распределение числа g -квантов по энергиям. В настоящее время твердо установлено, что g -излучение испускается дочерним (а не материнским) ядром. Свойства гамма-излучения. Большая проникающая способность Высокая химическая активность является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли. Гамма-лучи, в отличие от α -лучей и β -лучей, не содержат заряженных частиц и поэтому не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество: Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным).Комптон-эффект — гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома. Эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон. Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра. 49. Практически все методы наблюдения и регистрации радиоактивных излучений (a, b, g)и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g -кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистрировать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию. 1. Сцинтилляционный счетчик. Наблюдение сцинтилляций — вспышек света при попадании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу и Э. Резерфорду на заре ядерной физики (1903) визуально регистрировать a -частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор и фотоэлектронный умножитель, позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. 2. Черенковский счетчик. Назначение черенковских счетчиков — измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. 3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. 4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. В них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных и счетчиках Гейгера — Мюллера. 5. Полупроводниковый счетчик — это детектор частиц, основным элементом которого является полупроводниковый диод. Время разрешения составляет примерно 10–9 с. Полупроводниковые счетчики обладают высокой надежностью, могут работать в магнитных полях. Малая толщина рабочей области полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц. 6. Камера Вильсона — это старейший и на протяжении многих десятилетий единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. 7. Диффузионная камера — это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем. 8. Пузырьковая камера (физик Д. Глезер). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. 9. Ядерные фотоэмульсии (российский физик Л. В. Мысовский)- это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Taк как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускорителях сверхвысоких энергий и в космических лучах. 50. Ядерная реакция – это превращение атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ -квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая: где X и Y – исходные и конечные ядра, а и b – бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частица.В ядерной физике эффективность взаимодействия характеризуют эффективным сечением σ. С каждым видом взаимодействия частицы с ядром связывают своё эффективное сечение: эффективное сечение рассеяния; эффективное сечение поглощения. Эффективное сечение ядерной реакции σ находится по формуле: где N – число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объёма n ядер; d N – число этих частиц, вступающих в реакцию в слое толщиной d x. Эффективное сечение σ имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдёт реакция. Единица измерения эффективного сечения ядерных процессов – барн (1 барн = 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса. В отличие от радиоактивного распада, который всегда протекает с выделением энергии, ядерные реакции могут быть как экзотермические (с выделением энергии), так и эндотермические (с поглощением энергии). Важнейшую роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора о том, что ядерные реакции протекают в две стадии по следующей схеме: Первая стадия – это захват ядром X частицы a, приблизившейся к нему на расстояние действия ядерных сил (примерно), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбуждённом состоянии. При столкновении нуклонов составного ядра, один из нуклонов (или их комбинация, например дейтрон) или α - частица могут получить энергию, достаточную для вылета из ядра. В результате наступает вторая стадия ядерной реакции – распад составного ядра на ядро Y и частицу b. характерное ядерное время – время, необходимое для пролета частицей расстояния порядка величины равной диаметру ядра Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например реакции, вызываемые быстрыми нуклонами и дейтронами). Ядерные реакции классифицируются: · по роду участвующих в них частиц – реакции под действием нейтронов; реакции под действием заряженных частиц (например протонов, дейтронов, α -частиц); реакции под действием γ -квантов; · по энергии вызывающих их частиц – реакции при малых энергиях (порядка электронвольтов); реакции при средних энергиях, реакции, происходящие при высоких энергиях; · по роду участвующих в них ядер – реакции на лёгких ядрах (А < 50); реакции на средних ядрах (50 < A < 100); реакции на тяжёлых ядрах (A > 100); · по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата 51. Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Немецкие физики В. Боте (1891 — 1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, -частицами, обнаружили возникновение излучения очень большой проникающей способности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие -лучи с энергией примерно 7 МэВ. Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водоро-досодержащими соединениями, например парафином, выбивает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые -кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ! Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891 — 1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не -кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции: В зависимости от энергии нейтроны условно делят на две группы: медленные и быстрые. Область энергий медленных нейтронов включает в себя область ультрахолодных (с энергией до 10-7эВ), очень холодных (10-7 — 10-4 эВ), холодных (10-4 — 10-3 эВ), тепловых (10-3 — 0, 5 эВ) и резонансных (0, 5 — 104эВ) нейтронов. Ко второй группе можно отнести быстрые (104 —108 эВ), высокоэнергетичные (108 — 1010 эВ) и релятивистские (³ 1010 эВ) нейтроны. 52. Ядерные реакции деления ядра — реакции деления, заключающиеся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось, и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z ≈ 1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z ≈ 1, 6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд β --превращений, сопровождаемых испусканием γ -квантов. Так как β --распад сопровождается превращением нейтрона в протон, то после цепочки β --превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу Большинство нейтронов при делении испускается практически мгновенно (t ≤ 10 –14 c), а часть (около 0, 7%) испускается осколками деления спустя некоторое время после деления (0, 05 c ≤ t ≤ 60 с). Первые из них называются мгновенными, вторые – запаздывающими. Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В основу теории деления атомных ядер (Н. Бор, Я. И. Френкель) положена капельная модель ядра. Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, и подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлетающиеся с огромной энергией. Вероятность деления ядер определяется энергией нейтронов. Нейтроны, обладающие энергией активации (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ, вызывают деление ядер урана U, тория Тh, протактиния Pa, плутония Pu. Тепловыми нейтронами делятся ядра U, Pu, и U, Th
|