![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пример выполнения типового расчета ⇐ ПредыдущаяСтр 3 из 3
Задания 1 - 8, 10 -13. Найти общие решения (общие интегралы) дифференциальных уравнений. Где указано, найти решение задачи Коши. Задание 1. Решение. Это уравнение простейшего типа. Его общее решение имеет вид (2.2): Под знаком интеграла неправильная дробно-рациональная функция. Выделяем целую часть
Интегрируя, получим Ответ: Задание 2. Решение. Это уравнение с разделяющимися переменными (см. (2.4.)). Запишем уравнение в дифференциальной форме: Разделив обе части уравнения на Общий интеграл уравнения (см. (2.5)) имеет вид: Ответ: Задание 3. Найти решение задачи Коши: Решение. Найдем сначала общее решение уравнения. Это линейное уравнение (см.(2.7.)). Решение уравнения ищем в виде: Выберем функцию Уравнение (9.1) - УРП. Разделим переменные Выберем одно решение этого уравнения (С=0): Находим решение уравнения (7.2): Общее решение уравнения имеет вид: Найдем решение задачи Коши. Найдем значение постоянной С из условия: при
Ответ. Решение задачи Коши: Задание 4. Решение. Это уравнение Бернулли (см.п. 2.6.). Решение ищем методом Бернулли:
Уравнение примет вид: Выберем функцию Найдем какое-нибудь решение уравнения (7.3). Тогда Уравнение (7.4) примет вид Общий интеграл уравнения: Ответ. Общее решение: Задание 5. Решение. Правая часть этого уравнения есть функция Уравнение примет вид Это УРП. Разделяем переменные Отсюда Подставив Ответ. Задание 6. Решение. Обозначим
Следовательно, это уравнение в полных дифференциалах. Общий интеграл уравнения (см. п. 2.7): Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение где функция Интегрируем уравнение (7.5):
где Подставим (7.7) в уравнение (7.6): Отсюда Согласно формуле (7.7) Ответ. Общий интеграл Задание 7. Решение. Это уравнение второго порядка и явно не содержит функции Уравнение (7.8) - УРП. Разделяем переменные (положить
Отсюда (учесть, что Подставляем Согласно (2.1)
Ответ. Общее решение Задание 8. Решение. Дифференциальное уравнение второго порядка не содержит явно переменной « Приходим к системе уравнений
Разделяем переменные в уравнении (7.10): Отсюда Это уравнение с разделяющимися переменными (УРП): Ответ. Общий интеграл уравнения: Задание 9. Даны корни характеристического уравнения ЛОУ второго порядка с постоянными коэффициентами: Решение. Правая часть уравнения - сумма трех функций специального вида: 1) 2) 3) Согласно таблице 2 частное решение ЛНУ, соответствующее
Частное решение ЛНУ с функцией
Коэффициенты Ответ. Задание 10. Решение. Это ЛНУ второго порядка с правой частью специального вида (таб.2, п.3). Находим общее решение однородного уравнения Характеристическое уравнение . Его корни Следовательно (см. таб.1), общее решение ЛОУ имеет вид В правой части ЛНУ многочлен второго порядка, кроме того Частное решение ЛНУ (см.табл.2, п.3) ищем в виде
Подставив в исходное уравнение Приравниваем коэффициенты при одинаковых степенях Частное решение имеет вид Общее решение имеет вид
Ответ.
Задание 11. Решение. Это ЛНУ второго порядка с правой частью специального вида (таб.2, п.3). Находим общее решение однородного уравнения Характеристическое уравнение имеет корни Найдем частное решение ЛНУ. Его правая часть специального вида Частное решение ищем в виде
Подставив в исходное уравнение Частное решение ЛНУ имеет вид Ответ. Задание 12. Решение. Это ЛНУ второго порядка с правой частью нестандартного вида. Находим фундаментальную систему решений ЛОУ: Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Его характеристическое уравнение Корни уравнения Фундаментальная система решений (см.табл.1) Тогда Решение ЛНУ ищется в виде
Система уравнений (6.6) для определения Используем формулы Крамера. Определитель системы
Вспомогательные определители Итак,
Тогда Здесь Подставляя Ответ. Задание 13. Найти решение задачи Коши:
Решение. Найдем общее решение ЛНУ (9.13). Его правая часть специального вида. Используем метод неопределенных коэффициентов. Характеристическое уравнение Общее решение однородного уравнения (см. табл.1)
Правая часть ЛНУ Следовательно, (см. табл.2), частное решение надо искать в виде:
Дифференцируем
(7.13): Приравниваем коэффициенты при Частное решение уравнения (7.13): Общее решение уравнения (7.13):
Отсюда Найдем решение задачи Коши. Подставим в (7.16) и (7.17)
Ответ. Решение задачи Коши Задание 14. Найти решение задачи Коши системы тремя методами: методом исключения, методом Эйлера, операторным методом.
Решение. Подробное изложение данной темы см. в [1]. Метод исключения. Дифференцируем по аргументу « Подставляем
Из первого уравнения находим и подставляем его в уравнение (9.19)
Т.о., мы приходим к системе уравнений Первое уравнение системы - ЛОУ второго порядка с постоянными коэффициентами. Его характеристическое уравнение Общее решение (см. табл. 1) имеет вид
Тогда
В уравнениях (7.20) и (7.21) положим
Подставляем Ответ. Метод Эйлера. Характеристическое уравнение (9.3) системы имеет вид
Отсюда Числа
Аналогично, числа
Два линейно независимых частных решений системы имеют вид Общее решение
В развернутом виде общее решение системы - Положим Решение задачи Коши имеет вид Получен тот же результат, что и методом исключения. Операционный метод. Обозначим изображения неизвестных функций
Тогда изображения производных (см.п.8)
Изображение системы (7.18) имеет вид Решение системы находим по формулам Крамера. Определитель системы Операторное решение системы уравнений (7.8) имеет вид По таблице 3 изображений и оригиналов находим
Тогда решение задачи Коши (7.8) имеет вид
что совпадает с решением по другим методам. Ответ.
Задание 15. Тело массой Решение. В заданиях 15 используется второй закон Ньютона:
Если движение прямолинейное, ось Это ЛНУ с постоянными коэффициентами и правой частью специального вида. Характеристическое уравнение имеет вид Общее решение соответствующего однородного уравнения имеет вид Частное решение (см. табл.2) ищем в виде
Для определения Общее решение ЛНУ Начальные условия:
Для определения Закон движения тела: Скорость тела: Время первой остановки тела (скорость равна нулю):
|