Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Соотношения полов , популяция млекопитающих и факторы его нарушающие .






Соотношение полов – один из важных демо графических параметров поддержания генетиче ской разнородности популяций (Шварц, 1969). Хромосомный механизм формирования пола у млекопитающих обеспечивает равное соотноше ние самцов и самок при рождении, а динамика половой структуры, имея непосредственное от ношение к размножению и численности популя ции, оказывает влияние на микроэволюционный процесс (Большаков, Кубанцев, 1984). Различают первичное соотношение полов – в зиготах после оплодотворения; вторичное – соотношение полов при рождении, третичное – соотношение полов зрелых, способных размножаться особей по пуляции (Геодакян, Геодакян, 1985). Среди факторов, влияющих на соотношение полов, отмечены температура, рацион, возраст родителей, поведенческие особенности и другие. Пока зано, что интегрированное влияние внешних и внутренних факторов сказывается на физическом статусе и репродуктивной способности особей (Евсиков и др., 1998), причем метаболические ре сурсы матери в период беременности влияют на вторичное соотношение полов потомков (Наза рова, Евсиков, 2004 и др.). Имеются данные об ускорении полового созревания самок домовых мышей, находящихся in utero рядом с самцами (Vandenberg, 1989) и, наоборот, – репродуктивной супрессии при внутриутробной локализации самок рядом с особями своего пола (Zielinski, Van denberg, 1991).

 

15)Оценка распределения количественных признаков.

 

Большинство признаков и свойств организмов характеризуются количественным типом индивидуальной изменчивости, для которой типично непрерывное изменение величины признака у особей какой-либо группы. Величина количественного признака варьирует от минимального уровня у части особей к среднему — у других и далее к максимальному уровню у остальных. Даже в пределах достаточно однородной по полу, возрасту, породе группы животных у близкородственных особей наблюдается индивидуальная изменчивость признака, величину которого можно измерить. К количественным признакам относят хозяйственно ценные (живая масса, величина, удой, настриг шерсти) и физиологические признаки. Они характеризуются типичным непрерывным изменением уровня у особей конкретной группы. К количественным признакам относят также и те, которые имеют прерывистое выражение, например яйценоскость, плодовитость, а также ряд физиологических отличий.

Количественные признаки непрерывного и прерывистого типов изменчивости имеют важное значение в практике животноводства и ветеринарии, в научных исследованиях, поэтому необходимо изучать генетические особенности и закономерности их изменчивости.

Генетические основы наследования количественных признаков. Наследование количественных признаков обусловлено одинаковым или сходным действием многих доминантных неаллельных генов на признак (полимерия) либо многими однозначными генами (полигения). На наличие двух или трех пар однозначно действующих полимерных генов, определяющих степень выраженности признака, указывает тип расщепления признака у особей второго поколения. Так, при трех доминантных генах А1; А2 и А3 и их рецессивных аллелях а1, а2, а3 во II поколении будут выявлены 64 варианта генотипов в соотношении 1: 6: 15: 20: 15: 6: 1.

Если общая возможность развития признака связана с действием одного гена, то его принято называть главным (менделирующим) геном (олигогеном) и тогда признак наследуется в соответствии с законом Менделя. Полигены могут проявлять модифицирующее влияние на количественные признаки и составлять группу генов-модификаторов, то есть генов, которые, действуя каждый отдельно, проявляют слабое влияние на изменение в фенотипе, вызванное действием главного гена. Гены-модификаторы могут оказывать влияние и при отсутствии главного гена.

Полимерные гены способствуют увеличению изменчивости и формированию различных подгрупп (экотипов) внутри вида, так как они обеспечивают многообразные рекомбинации генотипов. Влияние рекомбинации и отбора в разных условиях среды способствует образованию несходных экотипов и повышению приспособленности вида к многообразию факторов внешней среды, формированию наследственной адаптации.

 

16)Неоплоидия, полиплоидия у с/х животных.

 

Полиплоидия (от греч. polyploos — многократно повторяющийся и eidos — вид) — кратное увеличение числа наборов хромосом. Одиночный, или гаплоидный (и), набор у высших растений и животных представлен в половых клетках (см.).

При половом процессе после оплодотворения яйцеклетки, т. е. слияния двух гамет (см.), возникает новое состояние с двойным, или диплоидным (2n), набором хромосом (см.), передающимся большинству соматических клеток многоклеточного организма и представляющим для них норму.

По-существу, уже сам половой процесс дает при слиянии двух наборов первую ступень полиплоидии, однако в случае высших организмов полиплоидией принято называть более высокие степени умножения, т. е. наборы: триплоидный (Зn), тетраплоидный (4n), гексаплоидный (6n) и т. д.

Полиплоидии принадлежит особая роль в процессах нормальной дифференцировки некоторых клеток в индивидуальном развитии (онтогенезе) высших растений и животных, включая человека. Помимо этого, П. имеет значение и в процессах регенерации.

Особо надо отметить полиплоидию, наблюдаемую в патологических условиях (рост злокачественных новообразований).

Чрезвычайно велико значение П. в становлении новых видов растений. Близкородственные виды растений одного рода часто укладываются в так называемые полиплоидные ряды (пшеницы с 14 или 28, или 42 хромосомами и др.). Морфологические и физиологические преимущества полиплоидных видов позволяют им иногда заселять новые ареалы, недоступные из-за суровых условий для других видов. Установлено, что и в селекции сельскохозяйственных растений человек, не подозревая того, веками вел искусственный отбор полиплоидных форм, от которых ныне получают основную массу пищевых и кормовых белков, жиров и углеводов. Освоение метода экспериментального создания полиплоидов уже привело к внедрению некоторых из них в сельскохозяйственную практику (триплоидные сахарная свекла, перечная мята и др.).

Перспективный метод получения полиплоидных форм часто сочетают с искусственной гибридизацией. Полиплоидия — единственный метод преодоления бесплодия гибридов, полученных в результате скрещивания отдаленных видов.

В эволюции животных полиплоидия не получила такого значения, как у растений. Этому, по-видимому, препятствовал сложный механизм определения пола (см.) у животных. Однако там, где этот барьер снят, где имеет место партеногенетическое размножение, возникли полиплоидные виды, завоевавшие более или менее обширные ареалы.

Случаи возникновения спонтанной полиплоидии у животных наблюдаются так же, как и у растений; освоено и их получение в эксперименте. Это ставит вопрос и об их практическом использовании. Первые шаги уже сделаны в нашей стране В. Л. Астауровым, получившим размножающиеся полиплоиды шелкопряда. Отдельные случаи П. обнаружены и у человека.

 

17)Закон гомологических рядов наследственной изменчивости:

открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». При этом, чем ближе родство между видами, тем полнее сходство (гомология) в рядах их изменчивости. В законе обобщён огромный материал по изменчивости растений (злаков и других семейств), но он оказался справедливым и для изменчивости животных и микроорганизмов.

 

Явление параллельной изменчивости у близких родов и видов объясняется общностью их происхождения и, следовательно, наличием у них в генотипах значительной части одинаковых генов, полученных от общего предка и не изменившихся в процессе видообразования. При мутациях эти гены дают сходные признаки. Параллелизм в генотипической изменчивости у родственных видов проявляется параллелизмом фенотипической изменчивости, т. е. сходными признаками (фенотипами).

 

Закон Вавилова является теоретической основой при выборе направлений и методов для получения хозяйственно-ценных признаков и свойств у культурных растений и домашних животных.

18)Строение и синтез ДНК и РНК:

Строение ДНК:

ДНК (Дезоксирибонуклеиновая кислота): мономер-нуклеотид- азотистое основание + пятиуглеродный моносахарид(пентоза) + фосфорная кислота.

Азотистые основания относятся к классу пиримидинов (основания Тимин и Цитозин) и пуринов (основания Аденин и Гуанин).

Функция ДНК: хранение и передача наследственной иныформации.

Синтез ДНК: называется репликацией или редупликация (удвоение). Репликацию ДНК осуществляет фермент ДНК –полимераза. Этот фермент способен наращивать ДНК только на 3*-конце. Молекула ДНК антипараллельна, разные её концы называются 3*-конец и 5*-конец. При синтезе новых копий на каждой нити одна новая нить удлиняется в направлении от 5* до3*, а другая от 3* к концу 5*- Однако 5*-конец ДНК –полимераза наращивать не может. Поэтому синтез одной нити ДНК, той, которая растёт в «удобном» для фермента направлении, идёт непрерывно (она лидирующая или ведущая нить), а синтез другой нити осуществляется короткими фрагментами (фрагменты Оказаки). Потом эти фрагменты сшиваются и такая нить называется запаздывающей, в целом репликация этой нити идёт медленней.

Строение РНК: (Рибонуклеиновая кислота): полимер-рибонуклеотид: азотистое основание + пятиуглеродный моносахарид (пентоза)+ фосфорная кислота.

Пиримидиновые основания- Урацил и Цитозин. Пуриновые основания: Аденин и Гуанин.

Моносахарид еуклеотида РНК представлен рибозой.

Транскрипция-синтез РНК на ДНК, т.е. синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. Три этапа транскрипции:

1-ый: инициация-начало синтеза нити РНК, образуется первая связь между нуклеотидами.

2-ой: наращивание нити, её удлинение-элонгация.

3-ий: происходит терминация, освобождение синтезированной РНК.

 

19)Количественные и качественные признаки. Их наследование, методы изучения:

Количественный признак-признак определяющей значение которого имеют количественные выражения(пример: рост-155 см), это результаты подсчёта или измерения.

Каждый объект изучения может обладать целым рядом статистических признаков, но от объекта к объекту одни признаки меняются, остаются неизменными.

Изменяются, подсчитываются и выражаются цифрами(пример: живая масса, настриг шерсти, яйценоскость).

Качественные признаки-(форма и цвет семян, гороха, половые различия, определённых заболеваний), описываются словами (масть чёрная, красная, рыжая, чалая и т.д.)

 

20)Нарушение пола (Интерсексуальность и фримартинизм):

 

. Хромосомное определение пола. Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм) - раздел Биотехнологии, Генетика- предмет, объект. Методы генетических исследований 1 Хромосомное Определение Пола. У Растений И Жи...

У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомного определения пола:

У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса — содержащие по одной X (Z) хромосоме. У особей гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Zи W), либо только одна — X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.

Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм)

У животных нередко нарушено развитие признаков пола. Бриджес обнаружил у них изменения первичных и вторичных половых признаков, что зависело от числа половых хромосом и их отношения к числу аутосом в кариотипе. Интерсексуальные особи имели переходные формы между самцами и самками; «сверхсамки» и «сверхсамцы» характеризовались резко выраженными женскими или мужскими признаками. что пол особи определяется отношением числа Х-хромосом к числу аутосом (А).

Синдром Клайнфельтера характеризуется недоразвитием гонад, повышением выделения гонадотропина и другими изменениями. Классической формой кариотипа синдрома Клайнфельтера является 2л (аутосом) + XXY.

Синдром Тернера характеризуется женским фенотипом с дисгенезией гонад и другими генитальными дефектами. Цитогенетически синдром Тернера определяется формулой 2л (аутосом) + ХО (отсутствует вторая Х-хромосома).

Фримартинизм— особая форма интерсексуальности, выявляемая у крупного рогатого скота. Наблюдения показывают, что бесплодные телки — фримартины рождаются в двойне с бычком. Установлено, что в среднем 95 % телок из разнополых двоен имеют признаки фримартинизма. У них часто обнаруживают мужской тип экстерьера, недоразвитие матки и др.

Митоз упорядоченное деление ядра клетки при котором каждая их двух дочерних клеток получает такое же количество и те же типы хромосом какие имела...

 

21)Генетические болезни (Классификация и наследование у с/х животных):

У сельскохозяйственных животных известны десятки аномалий, возникновение которых связано с рецессивными или доминантными мутациями генов. Эти аномалии встречаются в отдельных популяциях с разной частотой, что зависит от скорости мутационного процесса, системы разведения животных и др. Знание конкретных форм врожденных аномалий у животных каждого вида, а также частоты их проявления в отдельных породах необходимо ветеринарным специалистам для селекционной профилактики распространения генетической патологии.

 

Аномалии у крупного рогатого скота. Биологические особенности данного вида животных — малошюдие и относительная позднеспелость. Корова обычно приносит одного теленка, который достигает половой и физиологической зрелости только к 1, 5 года, так что период между первым отелом матери и дочери в среднем составляет 5 лет. Вследствие этого появление в стаде аномального приплода может существенно снижать уровень воспроизводства и интенсивность племенного отбора поголовья. У крупного рогатого скота изучен широкий спектр врожденных шомалий, детерминированных летальными, полулетальными и субвитальными генами. 46 аномалий включено в Международный список летальных дефектов под шифром А (табл. 43). Относительная частота отдельных типов аномалий в каждой породе или популяции может быть различной. В костромской породе, по нашим данным, наиболее часто регистрируется генетическая аномалия головы — укорочение челюсти (табл. 44), в ярославской породе — синдактилия, в холмогорской — контрактуры мышц, в черно-пестрой — пупочные грыжи. У крупного рогатого скота в Германии наиболее часто (21 %) встречались аномалии центральной нервной системы.

 

Второе место по частоте регистрации занимала комплексная аномалия — сочетания пупочных грыж с расщеплением брюха и плода в целом. Частота аномалий, или процентное отношение аномального приплода к общему его числу, в пределах конкретных популяций также может быть самым различным и по средним оценкам не превышать 1 %. Однако этот показатель зависит от полноты и точности регистрации аномалий. Так, в Германии после организации четкого учета сделали вывод, что частота аномалий возросла в несколько раз. Вопрос в другом: все ли аномалии поддаются визуальному наблюдению? Очевидно, не все. Так, в костромской породе средняя частота всех форм аномалий за 12-летний период составила 1, 15 %. Частота же общей смертности приплода (абортированные, мертворожденные, аномальные, павшие без видимых дефектов телята) в этом хозяйстве составила 10, 2 %. Определенная доля этой смертности также связана с генными мутациями, вызывающими не морфологические дефекты, а нарушение обмена и другие аномалии, выявление которых возможно только специальными методами.

 

Особую роль в распространении генетических аномалий как у крупного рогатого скота, так и у животных других видов могут сыграть производители. От каждого производителя при искусственном осеменении в год можно получить сотни и тысячи потомков. Так, от одного быка за рубежом получили 100 тыс. телят. Если такой производитель окажется носителем генной мутации, то она быстро распространится в породе. Вот некоторые примеры из многочисленных фактов, описанных в литературе. В результате интенсивного использования быка Принца Адольфа, завезенного в Швецию, и последующего стихийного инбридинга на него частота бесшерстности в отдельных шведских стадах была свыше 5 %. Такая же ситуация сложилась в Швеции после импорта быка Галлуса, который оказался гетерозиготным носителем гена, обусловливающего отсутствие конечностей.

 

В потомстве отдельных быков черно-пестрой породы и Шароле в США и Германии регистрировали случаи рождения карликовых телят с частотой соответственно 23, 3 и 22, 2 %. В бывш. Чехословакии при обследовании потомков 166 быков-производителей установлено, что 43 из них были носителями летальных генов. У одного быка — носителя доминантной аномалии «заячья губа»— дефект проявился среди 44 % бычков и 71 % телочек из его потомства.

 

В костромской породе нами проанализировано распространение укорочения нижней челюсти и мопсовидности через быка Бурхана, который сам имел в потомстве дефектных телят; его сыновья, внуки, правнуки, женские потомки также давали аномальный приплод (рис. 57). Большинство телят получено от родственного спаривания и спаривания родителей с нормальным фенотипом при наличии общего предка. Следовательно, можно сделать вывод о рецессивном типе наследования данной аномалии. Из рисунка видно, что наибольшее количество дефектных телят зарегистрировано в потомстве быка Жетона 3501 (внука быка Бурхана) при использовании его в товарном хозяйстве, где часть коров имела в генотипе такой же рецессивный ген.

 

Аномалии у свиней. В Международный список летальных дефектов свиней включено 18 генетических аномалий.

Основная часть их обусловлена аутосомными рецессивными генами (табл. 45). Генетические аномалии могут занимать значительное место в патологии свиней. Рассмотрим несколько таких примеров. В Испании при исследовании 23 449 поросят из 2399 пометов, полученных от хряков пород дюрок, йоркшир, гемпшир и белый честер, выявили соответственно 6, 21; 6, 02; 9, 66; 2^62 % аномальных пометов.

В Дании для выяснения характера и частоты возникновения врожденных аномалий в течение двух лет исследовали 6669 павших поросят из 2936 пометов. Различные аномалии выявлены у 1, 4 % поросят к числу родившихся, или 6, 2 % к числу павших до отъема особей. При патологоанатомическом исследовании у 25, 9 % аномальных поросят были обнаружены недоразвитие клапанов, незакрытие анального отверстия, субаортальные стенозы, эктопия сердца и другие дефекты сердечно-сосудистой системы. У 23, 4 % поросят найдены различные нарушения развития двигательной системы. Аномалии центральной нервной системы выявлены у 5, 9 % поросят, среди них раздвоенный мозг и водянка мозга. Заращение прямой кишки, тонких кишок или их неполное развитие обнаружены у 30 % поросят, а различные грыжи и асцит — у 6, 8 %. «Заячья губа», расщепление нёба, риноцефали т и другие аномалии лицевой части головы найдены у 6, 1 %; гермафродитизм, незаращение мочеточника, водянка почек и уретры—у 1, 7 % поросят. Указанные аномалии проявлялись в потомстве отдельных производителей при инбридинге, что указывает на наследственный характер их возникновения.

 

Весьма убедительные доказательства наследственной природы крипторхизма у свиней получили Фридин и Ньюман. По их данным, в Канаде одно-, двухсторонний крипторхизм наблюдается ежегодно у 1—2 % всех хрячков, поступающих на рынок. Авторы скрещивали крипторхов с их матерями и полными сестрами. Потомков от таких скрещиваний спаривали между собой. В результате такого отбора и подбора частота крипторхизма у экспериментальных животных йоркширской породы возросла в среднем до 42, 9 % и особенно при использовании двух производителей. При обследовании поросят в США за один год было обнаружено около 400 тыс. животных с мошоночной грыжей.

 

Наблюдения показывают, что причиной нарушения плодовитости у хряков нередко бывает гипоплазия семенников. Частота этой аномалии, по данным исследователей из Германии, составила 19, 6 %. 30 таких хряков были оставлены для воспроизводства, каждым из них было покрыто от 4 до 40 маток (всего 439 голов), но лишь четыре из них дали потомство. Анализ показал, что патологические формы спермиев у этих хряков составляют 80—100 %. Все 30 аномальных животных имели общих предков, что указывает на наследственный характер гипоплазии семенников и дефектов спермиогенеза.

 

Наличие кратерных сосков у свиней — один из серьезных дефектов, поскольку поросята не получают от них молока. По данным Баварского института животноводства (Германия), частота этой аномалии у немецких ландрасов составила 6, 6 %. Как отмечают П. Н. Кудрявцев и др. (МВА), количество свиней с бездействующими кратерными сосками в последние годы увеличилось. Число таких сосков колеблется от 1 до 8. Поросята, которым достаются кратерные соски, погибают.

 

Кратерность — признак, обусловленный одним аутосомным рецессивным геном. Экспериментально это проверили П. Н. Кудрявцев с сотр. Предварительно выделив хряков и свинок—носителей аномалий (кчкч), нормальных, но гетерозиготных особей (Кчкч), дающих в приплоде поросят с кратерностью, и нормальных гомозиготных свиней (КчКч), авторы провели скрещивания между этими группами животных. В первом варианте скрещивали 27 нормальных гомозиготных маток с 15 хряками. Все 258 потомков были нормальными. Во втором варианте, где один из родителей был гомозиготным (КчКч), а другой — гетерозиготным (Кчкч), все поросята также были нормальными. В третьем варианте скрещивали 13 гетерозиготных хряков с 16 гетерозиготными матками. Из 168 родившихся поросят 39 (23, 2 %) имели кратерные соски. И наконец, в четвертом варианте один из родителей был гомозиготным, а другой — гетерозиготным. От них было получено 170 поросят, из них 86 (50, 5 %) оказались с нормальными сосками и 84 (49, 5 %) — с кратерными. Результаты этого опыта доказывают рецессивный тип наследования кратерности сосков у свиней.

 

Аномалии у овец. У овец описано около 90 врожденных аномалий. По данным Денниса и Лейпольда, большинство известных генетических дефектов у овец обусловлено моногенным аутосомным рецессивным типом наследования (табл.

46). Наиболее часто у этого вида животных встречаются черепно-лицевые дефекты, особенно агнатия, а также искривление передних конечностей, микроагнатия, гермафродитизм, крипторхизм, гипос-падиаз, прогнатия, атрезия ануса, микротия, энтропия, тортико-лис, полителия, артрогрипоз.

У овец часто наблюдали крипторхизм, который сочетался с таким вторичным половым признаком, как комолость. Комолые бараны имеют низкую плодовитость. Путем жесткого племенного отбора удалось создать тип комолых баранов с нормальной плодовитостью, однако и среди них встречаются аномальные особи.

 

Аномалии у птиц. Птицы, прежде всего куры, наиболее изучены в отношении генетики аномалий.. Аномалии клюва часто встречаются и у уток.

 

Макс Джиббон и Шейкелферд описали аномалию при скрещивании белых леггорнов с батеркампами и бентамками и последующем разведении «в себе» — полидактилию. Кроме нее у цыплят наблюдали синдактилию и оперенные ноги. Частота синдрома составляла 16, 8 %. При скрещивании аномального петуха F2 с нормальными по фенотипу курами наблюдали расщепление — половина нормальных и половина аномальных особей (1: 1). Установлено, что данный комплекс признаков контролируется одним аутосомным геном, обладающим полулетальным эффектом, так как эмбриональная и постэмбриональная выживаемость аномальных цыплят очень низка.

 

Аномалии у лошадей. У лошадей тяжеловозных пород чаще встречается атрезия ободочной кишки. Распространение этой аномалии было отмечено в потомстве жеребца Суперба першеронской породы. Описана она также у жеребят чистокровной верховой породы остф-ризского происхождения. У тяжеловозных пород зарегистрирован несовершенный эпителиогенез. У жеребят ольденбургской породы в Германии обнаружена атаксия, названная ольденбургской. Распространилась она в линии 9. Одна из наиболее часто регистрируемых аномалий у лошадей — пупочная грыжа. Встречается она у легких и тяжеловозных пород.

 

У лошадей известны некоторые другие генетические и наследственно-средовые аномалии. Так, в США у лошадей нескольких пород наблюдается появление жеребят со своеобразной белой пятнистостью, названной «оверо». При скрещивании лошадей типа «оверо» рождаются жеребята с розовой кожей, у которых наблюдают гипоплазию кишечного тракта и изоэритролиз, а также колики, приводящие к гибели.

 

В Англии у лошадей дшстокровной верховой породы зарегистрированы и исследованы животные с нарушением координации движений — «болезнь вихляния». Установлена генетическая предрасположенность к этой аномалии.

 

Доказана наследуемость дерматозов конечностей у лошадей. Пороками с наследственной предрасположенностью являются нередко встречающееся хроническое деформирующее воспаление скакательного сустава — шпат, так называемая «костыльная нога» у жеребят, а также хроническое асептическое воспаление венечного блока копыт, наблюдаемое в основном у скаковых и беговых лошадей.

 

22)Хромосомные химеры и мозаики:

 

Хромосомный мозаик, хромосомная химера. Многоклеточный организм, у которого имеются соматические клетки с разными наборами хромосом: возникают из-за нарушений (в том числе, индуцированных) соматических митозов; часто встречается хромосомный мозаицизм по половым хромосомам - гинандроморфизм.

 

23)Популяционно генетические параметры признаков репродукции у свиней:????

 

 

24)Корреляции:

 

Корреля́ ция (от лат. correlatio «соотношение, взаимосвязь») или корреляционная зависимость — это статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.

Математической мерой корреляции двух случайных величин служит корреляционное отношение либо коэффициент корреляции. В случае если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической.

 

25)Плазмогены:

Плазмогены (plasmogenes) [греч. plasma — нечто образованное, сформированное и genes — порождающий, рождающийся] — наследственные факторы (гены), локализованные в цитоплазме, способные к авторепродукции и передаче наследственной информации. Основная масса П. расположена в ДНК хлоропластов, митохондрий и др. внеядерных элементов клетки; П. наследуются не по законам Г. Менделя. Впервые внехромосомный генетический фактор был описан у растений в 1908 г. К. Корренсом.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.