Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Глава 5. Нервная системаСтр 1 из 2Следующая ⇒
Нервная система человека (рис. 293) подразделяется на центральную (головной и спинной мозг) и периферическую (нервные корешки, узлы, сплетения, черепные и спинномозговые нервы).
Рисунок 293. Схема нервной системы человека На рисунке схематично показана нервная система человека. Она играет главную роль в согласованной деятельности организма. Особый комплекс периферических нервов и нервных узлов, иннервирующих сердце, легкие, пищеварительный тракт и другие внутренние органы, сосуды и ткани, и есть вегетативная нервная система. Ее работа, как правило, не зависит от волевых усилий человека, и в норме мы не ощущаем раздражения вегетативных узлов и нервов. Нервные узлы симпатического отдела вегетативной нервной системы образуют симпатические нервные стволы, расположенные около спинного мозга, а нервные узлы другого отдела — парасимпатического – лежат во внутренних органах или около них. Для слаженной деятельности различных частей такой сложной системы, как организм человека, необходимо координирующее устройство соответственной сложности. И в самом деле, нервная система, интегрирующая деятельность всех частей тела, является, несомненно, самой сложной из всех систем органов. Мышцы и железы животного или человека носят общее название эффекторов; глаза, уши и другие органы чувств называются рецепторами. Нервная система, состоящая из головного мозга, спинного мозга и проводящих путей, соединяет рецепторы с эффекторами и передает импульсы, или «сообщения», от первых ко вторым. Она способна делать это таким образом, что при раздражении того или иного рецептора должным образом реагирует надлежащий эффектор. Основными функциями нервной системы являются проведение импульсов и интеграция деятельности различных систем организма. Координирующие функции нервной системы, эндокринная регуляция и собственные регуляторные механизмы внутриклеточных ферментных систем (торможение и стимуляция активности ферментов, индукция и репрессия их синтеза) — все это факторы, способствующие гомеостазу, т.е. поддержанию постоянства внутренней среды организма. Центральная нервная система (ЦНС) — это совокупность нервных образований головного мозга и спинного, обеспечивающих восприятие, обработку, передачу, хранение и воспроизведе-ние информации с целью адекватного взаимодействия организма и изменений окружающей среды, координации оптимальной работы органов, их систем и организма в целом. Каждая из этих структур имеет морфологическую и функциональную специфику. Но, наряду с этим, у всех структур нервной системы есть ряд общих свойств и функций, к которым относятся: нейронное строение, электрическая и химическая синаптическая связь между нейронами, образование локальных сетей из нейронов, реализующих специфическую функцию, множественность прямых и обратных связей между структурами, способность нейронов всех структур к восприятию, обработке, передаче и хранению информации, преобладание числа входов для ввода информации над числом выходов, способность к параллельной обработке информации, способность к саморегуляции, функционирование на основе рефлекторного доминантного принципа. Головной мозг является важнейшим отделом ЦНС, в нем различают стволовую часть и конечный мозг, включающего подкорковые или базальные ганглии и большие полушария. Продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок относятся к стволу мозга. В филогенетическом отношении это наиболее древние нервные структуры и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов. Наиболее молодым в филогенетическом отношении является конечный мозг. В его состав входят большие полушария и расположенные под ними скопления серого вещества в виде подкорковых или базальных ганглиев. Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секретор-ную и защитную функции.
Рисунок 294. Нервные клетки. А — чувствительный нейрон. Б — двигательный нейрон. Стрелки показывают направление следования нервных импульсов. А: 1 - чувствительные нервные окончания; 2 - дендриты; 3 - тело нервной клетки; 4 - аксон. Б: 1 - дендриты; 1 - тело нервной клетки; 3 - аксон; 4 - двигательное нервное окончание (нервно-мышечная бляшка).
Вся нервная система построена на нервной ткани. Нервная ткань состоит из нервных клеток (нейронов) и связанных с ними анатомически и функционально вспомогательных клеток нейроглии. Нейроны выполняют специфические функции, являясь структурно-функциональной единицей нервной системы. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую (питательную), разграничительную и защитную функции. Нейрон (нейроцит) получает, перерабатывает, проводит и передает информацию, закоди-рованную в виде электрических или химических сигналов (нервных импульсов). Каждый нейрон имеет тело, отростки и их окончания (рис. 294). Снаружи нервная клетка окружена оболочкой (цитолеммой), способной проводить возбуждение, а также обеспечивать обмен веществ между клеткой и окружающей их средой. Тело нервной клетки содержит ядро и окружающую его цитоплазму (перикарион). Цитоплазма нейронов богата органеллами (субклеточными образованиями, выполняющими ту или иную функцию). Диаметр тел нейро-нов варьирует от 4-5 до 135 мкм. Форма тел нервных клеток тоже различная — от округлой, овоидной до пирамидальной. От тела нервной клетки отходят различной длины тонкие отростки двух типов. Один или несколько древовидно ветвящихся отростков, по которым нервный импульс приносится к телу нейрона, называют дендритом. У большинства клеток их длина составляет около 0, 2 мкм. Единственный, обычно длинный отросток, по которому нервный импульс направляется от тела нервной клетки — это аксон, или нейрит. По количеству отростков нейроны подразделяются на униполярные, би- и мульти-полярные клетки. Униполярные (одноотростчатые) нейроны имеют лишь один отросток. У человека такие нейроны встречаются лишь на ранних стадиях внутриутробного развития. Биполярные (двухотростчатые) нейроны имеют один аксон и один дендрит. Их разно-видностью являются псевдоуниполярные (ложноуниполярные) нейроны. Аксон и дендрит этих клеток начинаются от общего выроста тела и в последущем Т-образно делятся. Мультиполяр-ные (многоотросчатые) нейроны имеют один аксон и много дендритов, они составляют большинство в нервной системе человека. Нервные клетки динамически поляризованы, т.е. способны проводить нервный импульс только в одном направлении — от дендритов к аксону. В зависимости от функции нервные клетки подразделяют на чувствительные, вставочные и эффекторные. Чувствительные (рецепторные, афферентные) нейроны. Эти нейроны своими окончаниями воспринимают различные виды раздражений. Возникшие в нервных окончаниях (рецепторах) импульсы по дендритам проводятся к телу нейрона, которое находится всегда вне головного и спинного мозга, располагаясь в узлах (ганглиях) периферической нервной системы. Затем по аксону нервный импульс направляется в центральную нервную систему, в спинной или в головной мозг. Поэтому чувствительные нейроны называют также приносящими (аффе-рентными) нервными клетками. Нервные окончания (рецепторы) различаются по своему строению, расположению и функциям. Выделяют экстеро-, интеро- и проприо-рецепторы. Экстерорецепторы воспринимают раздражение из внешней среды. Эти рецепторы находятся в наружных покровах тела (коже, слизистых оболочках), в органах чувств. Интерорецепторы получают раздражение в основном при изменении химического состава внутренней среды организма (хеморецепторы), давления в тканях и органах (барорецепторы). Проприо-рецепторы воспринимают раздражение (натяжение, напряжение) в мышцах, сухожилиях, связках, фасциях и суставных капсулах. В соответствии с функцией выделяют терморецеп-торы, которые воспринимают изменения температуры, и механорецепторы, улавливающие различные виды механических воздействий (прикосновение к коже, ее сдавление). Ноци-рецепторы воспринимают болевые раздражения. Вставочные (ассоциативные, кондукторные) нейроны составляют до 97% нервных клеток нервной системы. Эти нейроны находятся, как правило, в пределах центральной нервной системы (головного и спинного мозга). Они передают полученный от чувствительного нейрона импульс эффекторному нейрону. Эффекторные (выносящие или эфферентные) нейроны проводят нервные импульсы от мозга к рабочему органу — мышцам, железам и другим органам. Тела этих нейронов располагаются в головном и спинном мозге, в симпатических или парасимпатических узлах на периферии. Нервные волокна представляют собой отростки нервных клеток (дендриты, аксоны), покрытые оболочками (рис. 295). При этом отросток в каждом нервном волокне является осевым цилиндром, а окружающие его нейролеммоциты (шванновские клетки), относящиеся к нейроглии, образуют оболочку волокна — нейролемму. С учетом строения оболочек нервные волокна подразделяют на безмякотные (безмиелиновые) и мякотные (миелиновые). Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой. Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки — осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. Внутренний слой, миелиновый, образуется в результате спирального накручивания нейролеммоцита (шванновской клетки) на осевой цилиндр (аксон) нервной клетки. Толстая и плотная миелиновая оболочка, богатая жирами, изолирует нервное волокно и предотвращает утечку нервного импульса из аксолеммы (оболочки аксона). Рисунок 295. Нервные волокна. А — миелиновое волокно. Б — безмиелиновое волокно. Нейроны соединяются между собой несколькими способами. Наиболее примитивным и древним является протоплазматический способ, когда отросток одной нервной клетки переходит в отросток другой клетки. Если нервные клетки контактируют между собой немиэлинизированными участками сомы или отростков и появляется возможность электро-тонического взаимодействия, соединение называют эфаптическим. Третий способ соединения между нейронами, а также нейрона с клетками, не принадлежащими к нервной системе (мышечными, желудочными), — синаптический — наиболее сложный. Он предполагает наличие специального структурного образования — синапса. Синапсами называют специализированные контакты между клетками, используемые для передачи сигналов. Синапс состоит из окончания пресинаптического нейрона, постсинап-тической структуры и синаптической щели между ними. Пресинаптические терминали аксона расширяются, образуя концевую «пуговку» («бляшку»), окруженную аксолеммой. Ее участок, почти вплотную прилегающий к постсинаптической мембране другой клетки, называется пресинаптической мембраной. В цитоплазме синаптической бляшки много митохондрий и синаптических пузырьков (везикул) диаметром 40-50 нм. Синапсы можно классифицировать, во-первых, по их местоположению и принадлежности соответствующим клеткам (нервно-мышечные, нейро-нейрональные, аксо-соматические, аксо-дендритические и т.д.). Во-вторых, синапсы можно разделить по знаку их действия на возбуждающие и тормозящие. И, наконец, по способу передачи сигналов они разделяются на электрические, в которых сигналы передаются электрическим током, и химические, в которых передатчиком сигнала (трансмиттер) или иначе посредником (медиатор) является то или иное физиологически активное вещество. Существуют и смешанные — электрохимические синапсы. Заметим, что и в том, и в другом синапсе имеются такие компоненты, как пресинаптическая мембрана, постсинаптическая мембрана и разделяющая их синаптическая щель.
В вегетативной нервной системе передача информации осуществляется, главным образом, с помощью медиаторов — ацетилхолина и норадреналина. Поэтому пути передачи и синапсы называют холинергическими (медиатор — ацетилхолин) или адренергическими (медиатор — норадреналин). Аналогично этому рецепторы, с кото-рыми связывается ацетилхолин, называют холинорецепторами, а рецепторы норадреналина — адренорецепторами. На адренорецепторы влияет также гормон, выделяемый надпочеч-никами, — адреналин. Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы — в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разно-образны. Зная механизм передачи информации в вегетативной нервной системе, можно предположить, как и в каких местах этой передачи нам необходимо действовать, чтобы выз-вать определенные эффекты. Для этого мы можем использовать вещества, которые имити-руют (миметики) или блокируют (литики) работу нейромедиаторов, угнетают действие ферментов, разрушающих эти медиаторы, или препятствуют высвобождению посредников из пресинаптических пузырьков. Используя такие лекарства, можно оказывать влияние на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и так далее. В ответ на раздражение нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. Свойство нервной ткани передавать возбуждение называется проводимостью. Скорость проведения возбуждения значительна: от 0, 5 до 100 м/с, поэтому между органами и системами быстро устанавливается взаимодействие, отвечающее потребностям организма. Возбуждение проводится по нервным волокнам изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна. Клетки нейроглии в нервной системе подразделяются на два вида. Это глиоциты (или макроглия) и микроглия. Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты. Эпендимоциты образуют плотный слой, выстилающий центральный канал спинного мозга и все желудочки головного мозга. Они участвуют в образовании спинномозговой жидкости, транспортных процессах, в метаболизме мозга, выполняют опорную и разграничительную функции. Эти клетки имеют кубическую или призматическую форму, располагаются они в один слой. Их поверхность покрыта микроворсинками. Астроциты образуют опорный аппарат центральной нервной системы. Они представляют собой мелкие клетки с многочисленными, расходящимися во все стороны отростками. Различают волокнистые и протоплазматические астроциты. Волокнистые астроциты имеют 20-40 длинных, слабо ветвящихся отростков, преобладают в белом веществе центральной нервной системы. Отростки располагаются между нервными волокнами. Некоторые отростки достигают кровеносных капилляров. Протоплазматические астроциты располагаются преимущественно в сером веществе центральной нервной системы, имеют звездчатую форму, от их тел во все стороны отходят короткие сильно разветвленные, многочисленные отростки. Отростки астроцитов служат опорой для отростков нейронов, образуют сеть, в ячейках которой залегают нейроны. Отростки астроцитов, достигающие поверхности мозга, соединяются между собой и образуют на ней сплошную поверхностную пограничную мембрану. Олигодендриты — наиболее многочисленная группа клеток нейроглии. Они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний. Олигрдендроциты представляют собой мелкие овоидные клетки диаметром 6-8 мкм с крупным ядром. Клетки имеют небольшое количество отростков конусовидной и трапециевидной формы. Отростки образуют миелиновый слой нервных волокон. Миелинообразующие отростки спирально накручиваются на аксоны. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один сегмент. Между сегментами находится лишенный миелина узловой перехват нервного волокна (перехват Ранвье). Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются нейролеммоцитами (шванновскими клетками). Микроглия составляет около 5% клеток нейроглии в белом веществе мозга и 18% в сером веществе. Микроглия представлена мелкими удлиненными клетками угловатой или неправильной формы, рассеянными в белом и сером веществе (клетки Ортега). От тела каждой клетки отходят многочисленные отростки разной формы, напоминающие кустики, которые заканчиваются на кровеносных капиллярах. Ядра клеток имеют вытянутую или треугольную форму. Микроглиоциты обладают подвижностью и фагоцитарной способностью. Они выполняют функцию своеобразных «чистильщиков», поглощая частицы погибших клеток. На срезах ЦНС видны участки серого и белого цветов. Это серое и белое вещества мозга. Серое вещество образовано телами нейронов, безмякотными и тонкими мякотными волокнами, клетками глии и капиллярами: оно или в центре (в спинном мозге), или на поверхности в виде тонкой коры (cortex) больших полушарий и мозжечка, или в виде скоплений серого вещества — ядер (nucleus) в стволе мозга и его подкорковом отделе. Тела нейронов в сером веществе переплетены клеточными телами и отростками астроцитов и нейронов (дендритов и слабомиелинизированных аксонов), идущими к нейрону и от него. Такую густую сеть отростков называют нейропилем (от лат. pilos «войлок»).
Рефлекторная функция спинного мозга. Серое вещество спинного мозга, задние и передние корешки спинномозговых нервов, собственные пучки белого вещества образует сегментарный аппарат спинного мозга. Он обеспечивает рефлекторную (сегментарную) функцию спинного мозга. Нервная система функционирует по рефлекторным принципам. Рефлекс представляет собой ответную реакцию организма на внешнее или внутреннее воздействие и распрост-раняется по рефлекторной дуге. Рефлекторные дуги — это цепи, состоящие из нервных клеток. Простейшая рефлекторная дуга включает чувствительный и эффекторный нейроны, по которым нервный импульс движется от места возникновения (от рецептора) к рабочему органу (эффектору) (рис. 299). Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинно-мозговом узле. Дендрит начинается рецептором, воспринимающим внешнее или внутреннее раздражение (механическое, химическое и др) и преобразующим его в нервный импульс, который достигает тела нервной клетки. От тела нейрона по аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами эффекторных нейронов. В каждом межнейронном синапсе с помощью биологически активных веществ (медиаторов) происходит передача импульса. Аксон эффек-торного нейрона выходит из спинного мозга в составе передних корешков спинно-мозговых нервов (двигательных или секреторных нервных волокон) и направляется к рабочему органу, вызывая сокращение мышцы, усиление (торможение) секреции железы.
Более сложные рефлекторные дуги имеют один или несколько вставочных нейронов. Тело вставочного нейрона в трехнейронных рефлекторных дугах находится в сером веществе задних столбов (рогов) спинного мозга и контактирует с приходящим в составе задних (чувствительных) корешков спинномозговых нервов аксоном чувствительного нейрона. Аксоны вставочных нейронов направляются к передним столбам (рогам), где располагаются тела эффекторных клеток. Аксоны эффекторных клеток направляются к мышцам, железам, влияя на их функцию. В нервной системе много сложных многонейронных рефлекторных дуг, у которых имеется несколько вставочных нейронов, располагающихся в сером веществе спинного и головного мозга. Взаимодействие процессов возбуждения и торможения — универсальный принцип, лежащий в основе деятельности нервной системы. Конечно, он реализуется не только на уровне сегментов спинного мозга. Вышестоящие отделы нервной системы осуществляют свое регуляторное влияние, вызывая процессы возбуждения и торможения нейронов нижестоящих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, «тем в большей степени высший отдел является распорядителем и распределителем деятельности организма» (И.П.Павлов). У человека таким «распорядителем и распределителем» является кора больших полушарий головного мозга.
Спинальная локомоция. Обнаружено, что основные характеристики локомоции, т.е. пере-мещения человека или животного в окружающей среде при помощи координированных движений конечностей, запрограммированы на уровне спинного мозга. Таким образом, даже на уровне спинного мозга обеспечиваются запрограммированные (автоматические) двигательные акты. Подобные независимые от внешней стимуляции двигательные программы шире представлены в высших двигательных центрах. Некоторые из них (например, дыхание) врожденные, другие же (например, езда на велосипеде) приобретаются в процессе научения Центральная нервная система. Белое вещество ЦНС состоит из длинных, покрытых белым миэлином, аксонов клеток и нейроглии. Тела этих клеток лежат в сером веществе или в ганглиях вне ЦНС. Будучи проводящей системой мозга, белое вещество осуществляет двусторонние связи между различными участками мозга, создавая таким образом ЦНС. В проводящих путях мозга волокна нервных клеток объединяются в пучки.
Таблица 11. Центральная нервная система
Головной мозг. Головной мозг состоит из больших полушарий (рис. 300-303) и ствола. Б ольшие полушария в глубине соединены большой спайкой — мозолистым телом. В них различают лобную, теменную, височную, затылочную доли и островок. В полушариях находятся боковые желудочки мозга, подкорковые ядра, внутренняя капсула. Доли мозга отделены друг от друга глубокими бороздами, среди которых наиболее выражены три глубоких борозды: центральная (роландова). отделяющая лобную долю от теменной, латеральная (сильвиева), ограничивающая лобную и теменную доли от височной и теменно-затылочная, проходящая по внутренней поверхности полушария и отделяющая теменную долю от затылочной. Наличие борозд и извилин значительно увеличивает общую площадь коры больших полушарий (до 2500 см), причем 2/3 поверхности находится в глубине борозд, а 1/3 — на поверхности полушарий. Головной мозг представляет собой расширенный передний конец спинного мозга. У человека это расширение настолько велико, что сходство со спинным мозгом в значительной степени замаскировано, но у низших животных структурное родство головного мозга со спинным ясно заметно.
Рисунок 300. Большой мозг (cerebrum). Проекция боковых желудочков на поверхность полу-шарий большого мозга. Вид сверху. I - лобная доля; 2 - центральная борозда; З - боковой желудочек; 4 - затылочная доля; 5 - задний рог бокового желудочка; 6 - IV желудочек; 7 -водопровод мозга; 8 - III желудочек; 9 - центральная часть бокового желудочка; 10 - нижний рог бокового желудочка; 11 - передний рог бокового желудочка.
Рисунок 301. Головной мозг (cerebrum). Сагиттальный разрез. Вид с медиальной стороны.
Большие полушария мозга — самый передний (рис. 303) и наиболее крупный из отделов головного мозга — обладают совершенно иной функцией, заключающейся в регуляции приобретенных форм. поведения. В основе сложных психологических явлений сознания, умственной деятельности, памяти, понимания и истолкования ощущений лежит активность нейронов большого мозга. В головном мозге имеются нервные центры, управляющие собственно человеческими способностями: умом, речью, памятью и т.д. Эти важные функции выполняются не всем головным мозгом, общий вес которого составляет всего 1, 5 кг. Сигналы, передаваемые через нервные пути, поступают только в кору головного мозга, состоящую из серого вещества. Там же локализованы и чисто человеческие функции. Чувствительная и двигательная зоны произвольных мышц находятся соответственно в лобной и теменной долях. Нервные центры чувств расположены в конкретных долях, и рядом с каждым из них существует архив, или центр памяти. Например, центр зрительной памяти можно сравнить с фотографическим архивом, в котором имеется карточка с изображением и названием каждого известного нам предмета. Некоторые умственные способности локализуются в лобных долях, у других нет точного местонахождения. Мышление и речь, то есть способность облекать мысли в слова, — чисто человеческие свойства. Центр речинаходится в левом полушарии головного мозга, и именно в этом центре образуется понятие, выражаемое каждым словом. Другие близлежащие центры содержат «архивы» значения слов, «ищут» нужные нам слова для выражения того, что мы хотим сказать. Следующий шаг — это овеществление мысли через нервные импульсы, которые приводят в движение речеобразующие органы (устная речь) или управляют мышцами руки и кисти (письменная речь). Во время сна организм восстанавливает энергию, израсходованную в течение дня; произвольные мышцы расслабляются, а некоторые непроизвольные, такие как дыхательные, замедляют свою работу. Однако покой нервной системы лишь частичен, так как продолжается работа головного мозга. Эта деятельность отражается в сновидениях, которые бывают всегда, хотя проснувшись, их часто не помнят. Сны — это своего рода «отдушина» нашего подсознания. Этот механизм состоит из различных этапов, в которых фазы «медленного» сна сменяются фазами «быстрого». Именно в фазах «быстрого» сна у нас бывают сновидения: если мы спим 8 часов, то видим сны в течение четырех или пяти фаз, продолжительностью 15-20 минут каждая. Память — одна из главных функций головного мозга. Без нее мы не могли бы ничему научиться и не извлекли бы никакой пользы из опыта. Память не локализована в какой-либо конкретной зоне коры головного мозга. То, что мы усваиваем, рассредоточивается по бесчисленным взаимосвязанным нейронам. Полагают, что память базируется в ядре нейронов, которые не претерпевают никаких изменений, когда информация хранится в кратковременной памяти (номер телефона, урок, который мы изучаем и т.д.), но подвергаются химическим изменениям при хранении информации в долговременной памяти (пережитый опыт, воспоминания и т. д.). Существует связь между памятью и эмоциями, так как обычно мы помним лучше то, что нам приятно или, наоборот, то, что является очень неприятным. Механизм забывания действует таким же образом: работает как защитная система, стирается то, что вызывает у нас страх или тревогу.
Головной и спинной мозг одеты тремя оболочками (рис. 305-307): твердой, паутинной и сосудистой. Твердая — наружная, соединительнотканная, выстилает внутреннюю полость черепа и позвоночного канала. Паутинная расположена под твердой — это тонкая оболочка с небольшим количеством нервов и сосудов. Сосудистая оболочка сращена с мозгом, заходит в борозды и содержит много кровеносных сосудов. Между сосудистой и паутинной оболочками образуются полости, заполненные мозговой жидкостью. Над продолговатым мозгом расположен мозжечок, Основная функция мозжечка — безусловно-рефлекторная координация движений, определяющая их четкость, плавность и сохранение равновесия тела, а также поддержание тонуса мышц. Через спинной мозг по проводящим путям импульсы от мозжечка поступают к мышцам. Контролирует деятельность мозжечка кора больших полушарий. Задний мозг включает варолиев мост и мозжечок. Варолиев мост снизу ограничен продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка. В веществе варолиева моста находятся ядра с V по VIII пары черепно-мозговых нервов (тройничный, отводящий, лицевой, слуховой). Варолиев мост проводит импульсы из одного полушария мозжечка в другое, координируя движения мышц на обеих сторонах тела. Средний мозг расположен впереди варолиева моста, он представлен четверо-холмием и ножками мозга. Средний мозг играет важную роль в регуляции тонуса и в осуществлении рефлексов, благодаря которым возможны стояние иходьба. Чувствительные ядра среднего мозга находятся в буграх четверохолмия: в верхних заключены ядра, связанные с органами зрения, в нижних — ядра, связанные с органами слуха. При их участии осуществляются ориентировочные рефлексы на свет и звук. Средний мозг содержит также группу нервных клеток, регулирующих мышечный тонус и позу. Таламус (рис. 317) представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму. В таламусе различают три основные группы ядер: передние, латеральные и медиальные. В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий. В эпиталамусе лежит верхний придаток мозга — эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши. Метаталамус представлен медиальными и латеральными коленчатыми телами, соединенными пучками волокон (ручки холмиков) с верхними (латеральные) и нижними (медиальные) холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха. Гипоталамус (рис. 316) располагается вентральнее зрительного бугра и включает в себя
Рисунок 316. Гипоталамус (hypothalamus; подбугорье) и гипофиз (hypophisis) на сагиттальном разрезе. Ядра гипоталамуса. 1 - передняя спайка; 2 - гипоталамическая борозда; 3 - околожелудочковое ядро; 4 - верхнемедиальное ядро; 5 - заднее ядро; 6 - серо-бугорные ядра; 7 - ядро воронки; 8 - углубление воронки; 9 - воронка гипофиза; 10 - задняя доля гипофиза; 11 - промежуточная доля гипофиза; 12 - передняя доля гипофиза; 13 - зрительный перекрест; 14 - надзрительное ядро (супраоптическое); 15 - переднее гипоталамическое ядро; 16 - терминальная пластинка.
собственно подбугорную область и ряд образований, расположенных на основании мозга. Сюда относятся; конечная пластинка, зрительный перекрест, серый бугор, воронка с отходящим от нее нижним придатком мозга — гипофизом и сосцевидные тела. В гипоталамической области расположены ядра (рис. 317, 318) (надзрительное, околожелудоч-ковое и др.), содержащие крупные нервные клетки, способные выделять секрет (нейросекрет), поступающий по их аксонам в заднюю долю гипофиза, а затем в кровь. В заднем отделе гипоталамуса лежат ядра, образованные мелкими нервными клетками, которые связаны с передней долей гипофиза особой системой кровеносных сосудов.
На дне третьего желудочка (в гипоталамусе) находятся центры, регулирующие температуру тела, аппетит, водный баланс, углеводный и жировой обмен, кровяное давление и сон. Интересно, что передняя часть гипоталамуса вступает в действие при повышении температуры, а задняя — при понижении. Гипоталамус контролирует некоторые функции передней доли гипофиза, например секрецию гонадотропных гормонов, и вырабатывает гормоны, которые выделяет в кровь задняя доля гипофиза. Промежуточный мозг занимает в стволе самое высокое положение и лежит кпереди от ножек мозга. Состоит из двух зрительных бугров, надбугорной, подбугорной области и коленчатых тел. Зрительные бугры —главные подкорковые центры чувствительности: сюда по восходящим путям поступают импульсы со всех рецепторов тела, а отсюда — к коре больших полушарий. В подбугорной части (гипоталамус) находятся центры, совокупность которых представляет собой высший подкорковый центр вегетативной нервной системы, регулирующий обмен веществ в организме, теплоотдачу, постоянство внутренней среды. В передних отделах гипоталамуса располагаются парасимпатические центры, в задних — симпатические. В ядрах коленчатых тел сосредоточены подкорковые зрительные и слуховые центры. Ствол мозга. Условной границей между полушариями и стволом являются зрительные бугры. В стволе мозга выделяют 5 образований: зрительные бугры, ножки мозга, мост, продолговатый мозг, мозжечок. Ствол мозга имеет много общего со спинным мозгом: двигательные ядра черепных нервов являются гомологами передних рогов спинного мозга, чувствительные — задних рогов спинного мозга. В стволе мозга выделяют основание, где проходят главным образом проводящие пути, и покрышку, где расположены ядра черепных нервов и ретикулярная формация.
Рисунок 324. Черепномозговые нервы. Т аблица 12. Черепномозговые нервы человека
Проводящие пути головного и спинного мозга. Системы нервных волокон, проводящих импульсы от кожи и слизистых оболочек, внутренних органов и органов движения к различным отделам спинного и головного мозга, в частности к коре полушарий большого мозга, называются восходящими, или чувствительными, афферентными, проводящими путями. Системы нервных волокон, передающих импульсы от коры или нижележащих ядер головного мозга через спинной мозг к рабочему органу (мышце, железе и др.), называются двигательными, или нисходящими, эфферентными, проводящими путями. Проводящие пути образованы цепями нейронов, причем чувствительные пути обычно состоят из трех нейронов, а двигательные — из двух. Первый нейрон всех чувствительных путей располагается всегда вне мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Последний нейрон двигательных путей всегда представлен клетками передних рогов серого вещества спинного мозга или клетками двигательных ядер черепных нервов. Чувствительные пути. Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей). Спинной мозг Спинной мозг взрослого человека размещается в позвоночном канале и представляет собой белый цилиндрический тяж длиной 40-45 см и общей массой 34-38 г. По передней и задней поверхности спинного мозга расположены продольные борозды, в центре проходит спинно-мозговой канал, вокруг которого сосредоточено серое вещество —скопление огромного количества нервных клеток, образующих контур бабочки. По наружной поверхности тяжа спинного мозга расположено белое вещество — скопление пучков из длинных отростков нервных клеток. Спинной мозг человека содержит два утолщения: шейное и поясничное — которые начинают формироваться в первые годы развития ребенка. Шейное утолщение связано с регуляцией движения верхних конечностей, поясничное — нижних. В процессе постнатального развития формирование шейного и поясничного утолщений связано с двигательной активностью ребенка, что свидетельствует о важной роли движений как фактора развития и совершенствования нервной системы. В сером веществе различают передние, задние и боковые рога. В передних рогах залегают двигательные нейроны, в задних — вставочные, которые осуществляют связь между чувствительными и двигательными нейронами. Чувствительные нейроны лежат вне тяжа, в спинномозговых узлах по ходу чувствительных нервов.От двигательных нейронов передних рогов отходят длинные отростки — передние корешки, образующие двигательные нервные волокна. К задним рогам подходят аксоны чувствительных нейронов, формирующие задние корешки, которые поступают в спинной мозг и передают возбуждение с периферии в спинной мозг. Здесь возбуждение переключается на вставочный нейрон, а от него — на короткие отростки двигательного нейрона, с которого затем по аксону оно сообщается рабочему органу. Рисунок 327. Спинной мозг (medulla spinalis) на поперечном разрезе. I - мягкая оболочка спинного мозга; 2 - задняя срединная борозда; 3 - задняя промежуточная борозда; 4 - задний корешок спинномозгового нерва; 5 - задне-боковая борозда; 6 - пограничная зона; 7 - губчатый слой (губчатая зона); 8 - студенистое вещество; 9 - задний рог спинного мозга; 10 - боковой рог; 11 - зубчатая связка; 12 - передний рог спинного мозга; 13 - передний корешок спинно-мозгового нерва; 14 - передняя спинномозговая артерия; 15 - передняя срединная щель.
Рисунок 326. Топография сегментов спинного мозга в позвоночном канале. 1 - шейный отдел (сегменты С1-С8); 2 - грудной отдел (Th1-Th12); 3 - поясничный отдел (L1-L5); 4 - крестцовый отдел (S1-S5); 5 - копчиковый отдел (Со1-Со3). В межпозвоночных отверстиях двигательные и чувствительные корешки соединяются, образуя смешанные нервы, которые затем распадаются на передние и задние ветки. Каждая из них состоит из чувствительных и двигательных нервных волокон. Таким образом, на уровне каждого позвонка от спинного мозга в обе стороны отходит всего 31 пара спинно-мозговых нервов смешанного типа. Белое вещество спинного мозга образует проводящие пути, которые тянутся вдоль спинного мозга, соединяя как отдельные его сегменты друг с другом, так и спинной мозг с головным. Одни проводящие пути называются восходящими или чувствительными, передающими возбуждение в головной мозг, другие — нисходящими или двигательными, которые проводят импульсы от головного мозга к определенным сегментам спинного мозга. На поперечном разрезе можно видеть, что он состоит из двух типов ткани: внутренней массы серого вещества, имеющей в разрезе форму бабочки и состоящей из тел нервных клеток, и лежащего снаружи белого вещества, образованного пучками аксонов и дендритов. Белый цвет этих пучков обусловлен миэлиновыми оболочками нервных волокон; концы аксонов и дендритов, находящиеся в центральном сером веществе, не имеют миэлиновых оболочек. «Крылья» серого вещества разделены на два задних и два передних рога. Передние рога содержат тела нейронов, аксоны которых направляются в составе спинномозговых нервов к мышцам; все остальные нервные клетки спинного мозга являются вставочными нейронами. Аксоны и дендриты белого вещества разделены на пучки со сходными функциями: восходящие пути, которые проводят импульсы к головному мозгу, и нисходящие пути, которые проводят импульсы от головного мозга к эффекторам. Спинной мозг выполняет две функции — рефлекторную и проводниковую. Каждый рефлекс осуществляется строго определенным участком центральной нервной системы — нервным центром. Нервным центром называют совокупность нервных клеток, расположенных в одном из отделов мозга и регулирующих деятельность какого-либо органа или системы. Нервные центры спинного мозга непосредственно связаны с рецепторами и исполнительными органами тела. Двигательные нейроны спинного мозга обеспечивают сокращение мышц туловища и конечностей, а также дыхательных мышц — диафрагмы и межреберных. Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд вегетативных центров.
Еще одна функция спинного мозга — проводниковая. Пучки нервных волокон, образующих белое вещество, соединяют различные отделы спинного мозга между собой и головной мозг со спинным. Различают восходящие пути, несущие импульсы к головному мозгу, и нисходящие, несущие импульсы от головного мозга к спинному. По первым возбуждение, возникающее в рецепторах кожи, мышц, внутренних органов, проводится по спинномозговым нервам в задние корешки спинного мозга, воспринимается чувствительными нейронами спинно-мозговых узлов и отсюда направляется либо в задние рога спинного мозга, либо в составе белого вещества достигает ствола, а затем коры больших полушарий. Нисходящие пути проводят возбуждение от головного мозга к двигательным нейронам спинного мозга. Отсюда возбуждение по спинно-мозговым нервам передается к исполнительным органам. В боковых рогах спинного мозга находятся центры вегетативной нервной системы. На уровне С8-Th1 расположен симпатический центр расширения зрачка. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями. Аксоны этих нейронов, образующих вегета-тивное ядро в сегментах спинного мозга с восьмого шейного по второй поясничный, прохо-дят через передний рог, выходят из спинного мозга в составе передних корешков спинно-мозговых нервов. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).
Спинномозговые нервы — это 31 пара нервов, отходящих от спинного мозга и управляющих остальной нервной периферической системой, а также частью вегетативной нервной системы. Эти смешанные нервы берут начало в сером веществе спинного мозга, которое находится во внутренней части мозга и окружено белым веществом. Нервы образуют два хорошо дифференцированных отростка — передний, или вентральный, отросток состоит из двигательных волокон, а задний, или дорсальный, состоит из чувствительных волокон. Затем в области межпозвоночного отверстия они соединяются в один ствол, а потом снова ветвятся. Одна вентральная ветвь, которая делится на тысячи ответвлений, идет к шее, рукам, передней части груди и ногам. Дорсальная ветвь заворачивает за позвоночный столб и направляется к спине. Несколько спинномозговых нервов могут идти вместе до места назначения, образуя плотные сети, называемые сплетениями.
Рисунок 329. Спинномозговые нервы. На поперечном срезе в спинном мозге выделяют серое вещество, имеющее форму бабочки в центральных отделах и белое вещество, лежащее на ею периферии. В сером веществе выделяют передние (двигательные), задние (чувствительные) и боковые (вегетативные) рога. Белое вещество разделяется на передние, боковые и задние столбы (канатики) и представляет собой проводящие пути спинного мозга.
Рисунок 330. Топография периферических нервов, их выход из спинного мозга и отношение к сплетениям и позвоночным ганглиям.
Нервные волокна, вышедшие из спинного мозга, образуют передние и задние корешки. Условной границей корешка с одной стороны является спинной мoзг, а с другой — место их слияния. Участок от места слияния корешков до межпозвоночного узла составляет корешковый нерв; от узла до выхода из межпозвоночного отверстия — канатик; участки, где канатики переплетаются, определяются как нервное сплетение, а участки от сплетений до периферических рецепторов — как периферические нервы. Через спинномозговые нервы спинной мозг осуществляет контроль над туловищем, конечностями, внутренними органами грудной, брюшной полостей и таза. Согласно количеству туловищных сегментов и соответствующих сегментов спинного мозга у человека 31 пара спинномозговых нервов. Каждый из них начинается в области «своего» межпозвоночного отверстия, где его образуют соединяющиеся в один ствол передний (двигательный) и задний (чувствительный) корешки. Спинномозговые нервы очень короткие, так, после примерно 1, 5 см хода они уже заканчиваются, разветвляясь, причем все одинаковым образом, на переднюю, заднюю и оболочечную ветви. Каждая из 31-й правых и левых задних ветвей проходит между поперечными отростками пары, позвонков в область спины, где обеспечивает чувствительную иннервацию кажи и глубоких мышц (разгибателей туловища). Передние ветви спинномозговых нервов ведут себя более сложным образом, поскольку на строение контролируемых ими передних участков туловища оказывают влияние развивающиеся конечности. Это нарушает внешние признаки упорядоченности (сегментар-ности) в организации соответствующих отделов периферической нервной системы. Передние ветви грудных (12) спинномозговых нервов сохраняют эту упорядоченность, они идут каждый в своем межреберном промежутке (межреберные нервы) и иннервируют кожу и глубокие мышцы передней и переднебоковой стенок туловища (груди и живота).
Передние ветви шейных (8 нервов), грудных (12), поясничных (5), крестцовых (5) и копчикового (1-3) нервов образуют несколько сплетений, сложным образом соединяясь друг с другом. В местах соединений происходит обмен волокнами между нервными стволами в результате от такого сплетения пойдут в конечности нервы уже с иным набором волокон, нужным для определенных мышечных групп и кожных областей конечности. Шейное сплетение, plexus cervicalis, образовано передними ветвями 4 верхних шейных (CI- CIV) спинномозговых нервов (рис. 332). Эти ветви соединены тремя дугообразными петлями. Сплетение располагается на уровне четырех верхних шейных позвонков на переднелатеральной поверхности глубоких мышц шеи (мышца, поднимающая лопатку, медиальная лестничная мышца, ременная мышца шеи), будучи прикрыто спереди и сбоку грудино-ключично-сосцевидной мышцей. Шейное сплетение имеет соединения с добавочным и подъязычным нервами. Среди ветвей шейного сплетения различают мышечные, кожные и смешанные нервы (ветви).
От шейного сплетения отходят мышечные ветви, иннервирующие также трапециевидную и грудино-ключично-сосцевидную мышцы. Чувствительные (кожные) нервы шейного сплетения отходят от сплетения, огибают задний край грудино-ключично-сосцевидной мышцы немного выше ее середины и появляются в подкожной жировой клетчатке под подкожной мышцей шеи. Шейное сплетение дает следующие кожные ветви: большой ушной нерв, малый затылочный нерв, поперечный нерв шеи и надключичные нервы. 1. Большой ушной нерв, n. auricularis magnus, является самой большой кожной ветвью шейного сплетения. 2. Малый затылочный нерв, n. occipitalis minor, 3. Поперечный нерв шеи, n. transversus соlli, 4. Надключичные нервы, nn. supraclaviculares (3-5),
Диафрагмальный нерв, п. phrenicus, является смешанной ветвью шейного сплетения. Он формируется из передних ветвей III-IV (иногда и V) шейных спинномозговых нервов, спускается вниз по передней поверхности передней лестничной мышцы и через верхнюю апертуру грудной клетки (между подключичной артерией и веной) проникает в грудную полость. Двигательные волокна диафрагмального нерва иннервируют диаграмму, чувствительные — перикардиальная ветвь, r. pericardiacus, — плевру и перикард. Чувствительные диафрагмально-брюшинные ветви, rr. phrenicoabdominales, проходят в брюшную полость и иннервируют брюшину, покрывающую диафрагму. Ветви правого диафрагмального нерва проходят, не прерываясь (транзитом), через чревное сплетение к печени. Плечевое сплетение, plexus brachialis, образовано передними ветвями четырех нижних шейных (CV-CVIII), частью передней ветви IV шейного (CIV) и I грудного (ThI) спинномозго-вых нервов (рис. 334-346).
Рисунок 334. Схема плечевого сплетения (по С.И. Карчикяну). С5-D1 — передние ветви спинальных нервов; I, II, III — верхний, средний и нижний первичные стволы сплетения; а — задние, б — передние ветви первичных стволов сплетения; А — задний; Б — наружный; В — внутренний вторичные стволы сплетения; 1 - подкрыльцовый; 2 - лучевой; 3 - мышечно-кожный; 4 - срединный; 5 - локтевой нервы; 6 и 7 - внутренние кожные нервы предплечья и плеча.
В межлестничном промежутке передние ветви формируют три ствола: верхний ствол, truncus superior, средний ствол, truncus medius, и нижний ствол, truncus inferior. Эти стволы из межлестничного промежутка выходят в большую надключичную ямку и выделяются здесь вместе с отходящими от них ветвями как надключичная часть, pars supraclavicularis, плечевого сплетения. Стволы плечевого сплетения, расположенные ниже уровня ключицы, обозначаются как подключичная часть, pars infraclavicularis, плечевого сплетения. Уже в нижней части большой надключичной ямки стволы начинают делиться и формируют три пучка, fasciculi, которые в подмышечной ямке окружают подмышечную артерию с трех стороны. С медиальной стороны артерии располагается медиальный пучок, fasciculus medialis, с латеральной — латеральный пучок, fasciculus lateralis, и позади артерии — задний пучок, fasciculus posterior. Ветви, отходящие от плечевого сплетения, делятся на короткие и длинные. Короткие ветви отходят главным образом от стволов надключичной части сплетения и иннервируют кости и мягкие ткани плечевого пояса. Длинные ветви отходят от подключичной части плечевого сплетения и иннервируют свободную верхнюю конечность. Короткие ветви плечевого сплетения. К коротким ветвям плечевого сплетения относятся дорсальный нерв лопатки, длинный грудной, подключичный, надлопаточный, подлопаточ-ный, грудоспинной нерв, отходящие от надключичной части сплетения, а также латеральный и медиальный грудные нервы и подмышечный нерв, которые берут начало от подключичной части пучков плечевого сплетения. 1. Дорсальный нерв лопатки, n. dorsalis scapulae, 2. Длинный грудной нерв, n. thoracicus longus, 3. Подключичный нерв, n. subclavius (CV), направляется кратчайшим путем к подключичной мышце впереди подключичной артерии. 4. Надлопаточный нерв, n. suprascapularis (CV-CVII), 5. Подлопаточный нерв, n. subscapularis (CV-CVII), идет по передней поверхности подлопаточной мышцы, иннервирует эту и большую круглую мышцы. 6. Грудоспинной нерв, n. thoracodorsalis (CV-CVII), 7. Латеральный и медиальный грудные нервы, nn. pectorales lateralis et medialis, 8. Подмышечный нерв, n. axillaris, начинается от заднего пучка плечевого сплетения (CV- CVIII). Длинные ветви плечевого сплетения. Длинные ветви отходят от латерального, медиального и заднего пучков подключичной части плечевого сплетения. Из латерального пучка берут начало латеральный грудной и мышечно-кожный нервы, а также латеральный корешок срединного нерва. Из медиального пучка начинаются медиальный грудной нерв, медиальные, кожные нервы плеча и предплечья, локтевой нерв и медиальный корешок срединного нерва. Из заднего пучка происходят подмышечный и лучевой нервы. 1. Мышечно-кожный нерв, n. musculocutaneus, начинается от латерального пучка (CV-CVIII) плечевого сплетения в подмышечной ямке позади малой грудной мышцы. 2. Срединный нерв, n. medianus, образован слиянием двух корешков подключичной части плечевого сплет
|