Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Виды ионизирующего излучения






 

Радиоактивный распад сопровождается излучением — выделением из ядер элементарных частиц и (или) γ -квантов, неизбежно взаимодействующих с атомами и молекулами среды, в которой находятся радионуклиды. Это взаимодействие возможно благодаря некоторому запасу энергии, с которым частицы и кванты вылетают из материнского ядра. Результаты этого взаимодействия различны, однако наиболее важным из них является эффект ионизации — образование ионов — положительно и отрицательно заряженных частиц. Излучение, производящее в среде эффект ионизации, называется ионизирующим (в качестве сокращенной формы допускается использование термина «излучение»).

Важнейший фактор в явлениях взаимодействия излучения со средой — ионизационные потери, которые представляют собой акт ионизации, происходящий в том случае, когда кинетическая энергия облучающей частицы больше энергии связи орбитального электрона с ядром атома облучающейся среды. При этом электрон может быть сорван с оболочки облучаемого атома, и электрически нейтральный атом временно превращается в заряженное образование — ион, несущий положительный заряд. Сорванный электрон, теряя свою кинетическую энергию на ионизацию встречных атомов (вторичная ионизация), замедляется и захватывается каким- либо атомом, превращающимся при этом в отрицательный ион, то есть возникает пара ионов.

Помимо ионизационных потерь энергии, в веществе с высоким атомным номером имеют значение так называемые радиационные потери, возникающие при торможении движущейся частицы в электрическом поле встречных атомов. Энергия, затраченная при этом движущейся частицей, высвечивается квантами тормозного рентгеновского излучения. Радиационные (тормозные) потери выражены слабее в среде, состоящей из легких атомов. Воздух и биологические среды содержат тяжелые атомы в ничтожных количествах, и возникающее в этих средах тормозное рентгеновское излучение крайне слабо. Биологического значения оно практически не имеет.

Излучения наряду с ионизацией вызывают возбуждение атомов среды (перевод электронов с ближайшей к ядру оболочки на более удаленную от него). Возбуждение атомов требует меньше энергии, чем ионизация. В связи с этим летящая заряженная частица способна возбуждать атомы, расположенные на большем удалении от ее траектории, чем при ионизации. Поэтому на каждый акт ионизации приходится примерно два-три акта возбуждения.

Ионизированное состояние длится лишь стомиллионные доли секунды (10-8 с), после чего положительный ион, присоединив к себе любой свободный электрон, рекомбинирует, то есть восстанавливается в нейтральный атом. Рекомбинация сопровождается перегруппировкой орбитальных электронов; при этом энергия излучения. ранее поглощенная атомом при ионизации, превращается в простых веществах в тепловую энергию колебания молекул, но в некоторых веществах высвобождается (высвечивается) в виде квантов γ -, рентгеновского или ультрафиолетового излучения и даже видимого света. В последнем случае возникает явление люминесценции. Таким же путем избыток энергии отдается и возбужденными атомами. В сложных веществах возвращение в невозбужденное состояние может приводить к появлению химически активных радикалов и к другим химическим превращениям, которые, в свою очередь, способны изменить физические свойства облучаемого объекта.

Таким образом, ионизирующее излучение (ИИ), взаимодействуя с веществом, вызывает в нем различные эффекты: первичные (ионизация, возбуждение, люминесценция) и вторичные (химические и физические изменения). На выявлении перечисленных эффектов основаны средства и методы обнаружения и регистрации ИИ.

Из физических свойств ИИ, оказывающих влияние на их потенциальные возможности ионизировать нейтральные атомы, важными являются энергетические характеристики частиц и фотонов. Связь величины энергии излучения с возможным неблагоприятным воздействием на организм вполне понятна: чем больше величина энергии, тем больше способность к ионизации при столкновении различных «носителей» ИИ с нейтральными атомами. Поэтому одной из важнейших характеристик ИИ является энергетический спектр, представляющий распределение «носителей» ИИ по энергии.

Различают спектры дискретные и непрерывные. В первом случае величина энергии принимает дискретные (строго конкретные) значения, например 2, 5, 7, 5 МэВ. Во втором — возможны произвольные значения из некоторого интервала: 12-23 кэВ, 1-5 МэВ. Существуют энергетические спектры α -, β -, γ -, нейтронного или рентгеновского излучений и т. п.

Ионизирующее излучение классифицируется по разным признакам (рис. 2).



Рис. 2. Виды ионизирующего излучения

В частности, различают два вида ионизирующего излучения: корпускулярное и фотонное.

Корпускулярное ионизирующее излучение представляет собой поток элементарных частиц, обладающих определенной энергией и массой покоя, отличной от нуля.

Частицы, имеющие электрический заряд (α -частицы, электроны, позитроны, протоны) и кинетическую энергию, достаточную для ионизации атомов среды, относятся к непосредственно ионизирующему излучению. Нейтральные элементарные частицы (нейтроны с разной энергией) из-за отсутствия электрического заряда сами по себе не вызывают ионизацию, однако в процессе взаимодействия их со средой происходит образование заряженных частиц, способных давать эффект ионизации. Поэтому нейтральные частицы относят к косвенно ионизирующим.

Фотонное ионизирующее излучение также является косвенно ионизирующим. Оно представляет собой поток электромагнитных колебаний (квантов) с определенной длиной волны и энергией, распространяющихся прямолинейно и равномерно во все стороны от источника в вакууме с постоянной скоростью, близкой к скорости света (299792, 8 км/с).

По условиям образования различают следующие виды фотонного ионизирующего излучения:

γ -излучение с прерывистым (дискретным) энергетическим спектром, испускаемое при изменении энергетического состояния ядер в процессе радиоактивного распада, а также при аннигиляции частиц (позитрона и электрона). Испускание γ -квантов происходит в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением. Этот избыток мгновенно высвечивается в виде γ -кванта.

тормозное излучение с непрерывным энергетическим спектром, которое возникает при изменении скорости и кинетической энергии заряженных частиц, связанном с их торможением в электрическом поле ядра атома;

характеристическое излучение с дискретным энергетическим спектром, образующееся при изменении энергетического состояния атома в связи с перестройкой его внутренних электронных оболочек (перестройка внешних электронных оболочек атома сопровождается испусканием видимого света, инфракрасного или ультрафиолетового излучения, которые, как уже отмечалось, не относятся к ИИ);

рентгеновское излучение — совокупность тормозного и характеристического излучения, генерируемого рентгеновскими аппаратами в диапазоне энергии квантов от 1 кэВ до 1 МэВ.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.