Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Неньютоновские жидкости.
Течение некоторых жидкостей (коллоидных растворов, нефтей с большим содержанием асфальтенов и парафинов, растворы полимеров и т.д.) не подчиняются закону Ньютону. Такие жидкости в реологии принято называть неньютоновскими или аномальными. Закон Ньютона обычно нарушается при течении коллоидных растворов с удлиненными частицами дисперсной фазы, способными деформироваться в поле напряжений и структурированных систем. Такие коллоидные системы обладают определенными механическими свойствами – пластичностью, упругостью, прочностью и вязкостью. Эти свойства в большинстве случаев связаны с образованием структуры в жидкости, и поэтому их часто называют структурно-механическими или реологическими свойствами. Основы реологии коллоидных растворов впервые изучены Ф.Н.Шведовым, Бингамом и Грином. В 1889 году Ф.Н. Шведов, позже в 1916 году Бингам установили, что течение системы с пространственной структурой начинается лишь тогда, когда напряжение сдвига τ превышает определенное критическое значение τ 0, необходимое для разрушения в жидкости структурной сетки. Такое течение было названо пластическим, а критическое напряжение сдвига – пределом текучести или предельным напряжением сдвига. Систему, течение которой подчиняется такой идеализированной схеме, в реологии называют телом Бингама или бингамовскими пластиками. Они описываются следующим реологическим уравнением Бингама-Шведова:
где μ ’ – пластическая вязкость системы. Для ньютоновских жидкостей предельное напряжение сдвига равно нулю, и уравнение (2) переходит в закон Ньютона, а пластическая вязкость – в истинную вязкость. Из уравнения (2) следует: система до τ 0 упруго деформируется, после этого течет с постоянной пластической вязкостью μ ’ = (τ –τ 0) / (du/dx). В области упругой деформации вязкость бингамовского пластика чрезвычайно высокая. Здесь упруго деформируется структурный «каркас» из частиц дисперсной фазы. При превышении τ 0, согласно уравнению Бинагама-Шведова, структурная сетка мгновенно разрушается, и вязкость системы принимает постоянное значение. Линия консистентности бингамова тела выражается прямой линией, отсекающей отрезок на оси абсцисс, равный τ 0 от начала координат (рис.1). Рис.1. Линия консистентности и зависимость μ ’ от τ для пластической жидкости.
Примером систем, хорошо подчиняющихся уравнению (2), могут служить нефти с высоким содержанием парафинов при температурах ниже температуры кристаллизации. Однако у многих реальных структурированных коллоидных систем линия консистентности оказывается не прямой, а кривой, отсекающей на оси напряжений сдвига некоторый отрезок (рис.2). В этом случае при достижении предела текучести структура разрушается не сразу, а постепенно, по мере увеличения скорости сдвига.
Рис.2. Линия консистентности и зависимость μ ’ от τ для реальной упруго-пластической системы.
Для характеристики механических свойств структуры в этом случае вводят три параметра: минимальный предел текучести (статическое напряжение сдвига), соответствующий началу течения жидкости τ 0; предел текучести по Бингаму (динамическое напряжение сдвига по Бингаму) τ Б; максимальный предел текучести (напряжение сдвига предельного разрушения структуры), при котором кривая переходит в прямую линию τ m (рис.2). Значение τ m равно напряжению, при котором структура в жидкости полностью разрушается. Математическая модель упруго-пластической жидкости выражается следующей степенной зависимостью:
где κ – мера консистентности жидкости. С увеличением вязкости жидкости мера консистентности растет; n – степень неньютоновского поведения системы. Значение n всегда меньше единицы. Чем больше n отличается от единицы, тем сильнее проявляются неньютоновские свойства жидкости. Кажущаяся вязкость системы определяется из соотношения В качестве примера упруго-пластической жидкости можно указать на масляную краску, буровые растворы, высоко парафинистую дегазированную нефть с температурой ниже температуры насыщения парафином. Например, линии консистентности такой формы (рис.2) обнаружены у некоторых нефтей месторождений Азербайджана, Узбекистана, Казахстана. На практике наличие статического напряжения сдвига у жидкости часто играет положительную роль. Так, толщина слоя краски, оставленная после нанесения на вертикальную поверхность, определяется величиной τ 0. Следовательно, изменяя значение τ 0, можно регулировать резкой краски на покраску поверхности. При бурении скважин процесс проходки часто прерывается. Применение качественных буровых растворов позволяет удерживать во взвешенном состоянии часть выше выбуренной породы и тем самым предотвращать поломку бурового инструмента. При этом регулирование параметров и размеров частиц удерживаемого в буровом растворе шлама достигается подбором параметра τ 0. Рис.3. Линия консистентности и зависимость μ ’ от τ для вязкопластической системы.
То же самое наблюдается и при течении растворов высокомолекулярных соединений с гибкими, свернутыми в клубок макромолекулами, например, у водных растворов полимеров. Здесь снижение вязкости обусловлено распрямлением молекул и ориентацией в направлении потока. Система ведет себя при течении как жидкость, в которой взвешены частицы, способные ориентироваться или деформироваться. Во всех этих случаях речь идет о кажущейся или эффективной вязкости, так как истинная вязкость жидкости от скорости течения не зависит. Механические свойства псевдопластической жидкости характеризуются двумя параметрами: динамическим напряжением сдвига предельного разрушения структуры или ориентирования частиц в потоке τ m (рис.3). Реологическое уравнение у таких систем выражают в виде степенной зависимости Кажущаяся вязкость вязко-пластической жидкости выражается следующим образом: Здесь и в предыдущем случае необходимо иметь в виду, что для реальной жидкости n является переменным и зависящим от скорости сдвига. Поэтому при решении практических задач значение n следует определять в ограниченном пределе скоростей сдвига. Кроме того, неудобство использования степенного закона обусловлено зависимостью размерности меры консистентности от показателя степени. В настоящее время для увеличения нефтеотдачи пластов, при воздействии на призабойную зону скважин и проведении изоляционных работ применяются растворы полимеров. В некоторых условиях в пористой среде они проявляют свойства дилатантных жидкостей. Термин «дилатантная» можно применять для тех жидкостей, кажущаяся вязкость которых с увеличением скорости сдвига повышается (рис.4). Рис.4. Линия консистентности и зависимость кажущейся вязкости от напряжения сдвига для дилатантной жидкости.
Такой тип течения был впервые обнаружен Рейнольдсом в суспензиях при большом содержании твердой фазы и крахмальных клейстерах. Рейнольдс при объяснении дилатантных свойств суспензий высказывает предположение о том, что в состоянии покоя твердые частицы имеют наиболее плотную упаковку, а пространство между частицами заполнено жидкостью. При течении суспензии с небольшой скоростью жидкость служит смазкой, уменьшающей трение между частицами, и напряжения сдвига невелики. При больших скоростях сдвига плотная упаковка частиц нарушается, увеличивается объем суспензии и уже при новой структуре жидкости ее недостаточно для смазки трущихся друг о друга частиц. Действующие напряжения сдвига при этом увеличиваются значительно быстрее, чем скорости сдвига. Для описания реологического поведения дилатантной жидкости также применяют степенной закон, но с показателем степени больше единицы.
|