Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Входящий поток




В первую очередь подлежат исследованию входящий поток.

Всякое исследование в теории массового обслуживания начинается с изучения того, что необходимо обслужить, т. е. входящего потока требований. Большинство транспортных потоков удовлетворительно описывается законами распределения: Пуассона, Эрланга, биномиальным, нормальным.

Поток требований, описываемый законом Пуассона, рассматривается как простейший, если он обладает свойствами стационарности, ординарности и отсутствием последействия.

Свойством стационарности обладает поток, у которого вероятность поступления определенного числа требований в течение принятого промежутка времени зависит только от величины этого промежутка и не зависит от того, где на оси времени он находится.

Поток ординарен, если практически не совмещаются в прибытии два и более требований на обслуживание.

Отсутствие последействия заключается в том, что вероятность поступления за период [ t0, t0+ t1 ] числа требований не зависит от того, сколько их? и как они поступали до момента t0 .

Для простейшего потока вероятность того, что за отрезок времени tпоступит mтребований, равна:

 

 

где: λ — средняя интенсивность потока требований, измеряемая числом требований, поступивших в единицу времени.

Важная характеристика потока — закон распределения длины промежутка времени Tмежду соседними требованиями. Если этот поток не обладает последействием, то поступление одного требования не влияет на поступление других требований в дальнейшем. Поэтому вероятность того, что интервал между требованиями будет не меньше величины t

 

Во вторую очередь подлежит анализу поток обслуживания.

Важное понятие теории массового обслуживания — время обслуживания (то есть его продолжительность).

Оно, прежде всего, характеризует функционирование каждого аппарата обслуживающей системы. Продолжительность обслуживания требований может быть различной, что объясняется их неидентичностью, состоянием и техническими возможностями аппаратов, используемых для обслуживания.

В общем случае время обслуживания — это случайная величина, которую описывает закон распределения:

где: F(t) – вероятность того, что время обслуживания γ меньше некоторого наперед заданного значения t.

В транспортных системах наибольшее распространение получили показательное и нормальное распределение.

 


.

mylektsii.ru - Мои Лекции - 2015-2019 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал