Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Структура ТDМА кадров и формирование сигналов в стандарте GSM






 

В результате анализа различных вариантов построения цифровых сотовых систем подвижной связи (ССПС) в стандарте GSM принят многостанционный доступ с временным разделением каналов (TDMA). Общая структура временных кадров показана на рис. 1.6 [1.4]. Длина периода последовательности в этой структуре, которая называется гиперкадром, равна Тг = 3 ч 28 мин 53 с 760 мс (12533, 76 с). Гиперкадр делится на 2048 суперкадров, каждый из которых имеет длительность Те = 12533, 76/2048 = 6, 12 с.

Рис 1.3 Структура ТDМА кадров

 

Суперкадр состоит из мультикадров. Для организации различных каналов связи и управления в стандарте GSM используются два вида мультикадров:
1) 26-позиционные TDMA кадры мультикадра;
2) 51-позиционные TDMA кадры мультикадра.

Суперкадр может содержать в себе 51 мультикадр первого типа или 26 миультикадров второго типа. Длительности мультикадров соответственно: 1) Тм= 6120/51 = 120 мс;
2) Тм = 6120/26 = 235, 385 мс (3060/13 мс). Длительность каждого TDMA кадра Тк = 120/26 = 235, 385/51 = 4, 615 мс (60/13 мс). В периоде последовательности каждый TDMA кадр имеет свой порядковый номер (NF) от О до NFmax, где NFmax = (26х51х2048) -1 = 2715647. Таким образом, гиперкадр состоит из 2715647 TDMA кадров. Необходимость такого большого периода гиперкадра объясняется требованиями применяемого процесса криптографической защиты, в котором номер кадра NF используется как входной параметр. TDMA кадр делится на восемь временных позиций с периодом

То = 60/13: 8 = 576, 9 мкс (15/26 мс)

Каждая временная позиция обозначается TN с номером от 0 до 7. Физический смысл временных позиций, которые иначе называются окнами, - время, в течение которого осуществляется модуляция несущей цифровым информационным потоком, соответствующим речевому сообщению или данным.

Цифровой информационный поток представляет собой последовательность пакетов, размещаемых в этих временных интервалах (окнах). Пакеты формируются немного короче, чем интервалы, их длительность составляет 0, 546 мс, что необходимо для приема сообщения при наличии временной дисперсии в канале распространения.

Информационное сообщение передается по радиоканалу со скоростью 270, 833 кбит/с. Это означает, что временной интервал TDMA кадра содержит 156, 25 бит. Длительность одного информационного бита 576, 9 мкс/156, 25 = 3, 69 мкс. Каждый временной интервал, соответствующий длительности бита, обозначается BN с номером от 0 до 155; последнему интервалу длительностью 1/4 бита присвоен номер 156.

Для передачи информации по каналам связи и управления, подстройки несущих частот, обеспечения временной синхронизации и доступа к каналу связи в структуре TDMA кадра используются пять видов временных интервалов (окон):

NB используется для передачи информации по каналам связи и управления, за исключением канала доступа RACH. Он состоит из 114 бит зашифрованного сообщения и включает защитный интервал (GP) в 8, 25 бит длительностью 30, 46 мкс. Информационный блок 114 бит разбит на два самостоятельных блока по 57 бит, разделенных между собой обучающей последовательностью в 26 бит, которая используется для установки эквалайзера в приемнике в соответствии с характеристиками канала связи в данный момент времени.

В состав NB включены два контрольных бита (Steeling Flag), которые служат признаком того, содержит ли передаваемая группа речевую информацию или информацию сигнализации. В последнем случае информационный канал (Traffic Channel) " украден" для обеспечения сигнализации. Между двумя группами зашифрованных бит в составе NB находится обучающая последовательность из 26 бит, известная в приемнике. С помощью этой последовательности обеспечивается:

- оценка частоты появления ошибок в двоичных разрядах по результатам сравнения принятой и эталонной последовательностей. В процессе сравнения вычисляется параметр RXQUAL, принятый для оценки качества связи. Конечно, речь идет только об оценке связи, а не о точных измерениях, так как проверяется только часть передаваемой информации. Параметр RXQUAL используется при вхождении в связь, при выполнении процедуры " эстафетной передачи" (Handover) и при оценке зоны покрытия радиосвязью;

- оценка импульсной характеристики радиоканала на интервале передачи NB для последующей коррекции тракта приема сигнала за счет использования адаптивного эквалайзера в тракте приема;

-определение задержек распространения сигнала между базовой и подвижной станциями для оценки дальности связи. Эта информация необходима для того, чтобы пакеты данных от разных подвижных станций не накладывались при приеме на базовой станции. Поэтому удаленные на большее расстояние подвижные станции должны передавать свои пакеты раньше станций, находящихся в непосредственной близости от базовой станции. FB предназначен для синхронизации по частоте подвижной станции. Все 142 бита в этом време.нном интервале - нулевые, что соответствует немодулированной несущей со сдвигом 1625/24 кГц выше номинального значения частоты несущей. Это необходимо для проверки работы своего передатчика и приемника при небольшом частотном разносе каналов (200 кГц), что составляет около 0, 022% от номинального значения полосы частот 900 МГц. FB содержит защитный интервал 8, 25 бит так же, как и нормальный временной интервал. Повторяющиеся временные интервалы подстройки частоты (FB) образуют канал установки частоты (FCCH).

SB используется для синхронизации по времени базовой и подвижной станций. Он состоит из синхропоследовательности длительностью 64 бита, несет информацию о номере ТОМА кадра и идентификационный код базовой станции. Этот интервал передается вместе с интервалом установки частоты. Повторяющиеся интервалы синхронизации образуют так называемый канал синхронизации (SCH).

DB обеспечивает установление и тестирование канала связи. По своей структуре DB совпадает с NB (рис. 1.6) и содержит установочную последовательность длиной 26 бит. В DB отсутствуют контрольные биты и не передается никакой информации. DB лишь информирует о том, что передатчик функционирует.

АВ обеспечивает разрешение доступа подвижной станции к новой базовой станции. АВ передается подвижной станцией при запросе канала сигнализации. Это первый передаваемый подвижной станцией пакет, следовательно, время прохождения сигнала еще не измерено. Поэтому пакет имеет специфическую структуру. Сначала передается концевая комбинация 8 бит, затем - последовательность синхронизации для базовой станции (41 бит), что позволяет базовой станции обеспечить правильный прием последующих 36 зашифрованных бит. Интервал содержит большой защитный интервал (68, 25 бит, длительностью 252 мкс), что обеспечивает (независимо от времени прохождения сигнала) достаточное временное разнесение от пакетов других подвижных станций. Этот защитный интервал соответствует двойному значению наибольшей возможной задержки сигнала в рамках одной соты и тем самым устанавливает максимально допустимые размеры соты. Особенность стандарта GSM - возможность обеспечения связью подвижных абонентов в сотах с радиусом около 35 км. Время распространения радиосигнала в прямом и обратном направлениях составляет при этом 233, 3 мкс.

В структуре GSM строго определены временные характеристики огибающей сигнала, излучаемого пакетами на канальном временном интервале TDMA кадра, и спектральная характеристика сигнала. Временная маска огибающей для сигналов, излучаемых на интервале АВ полного TDMA кадра, показана на рис. 1.7, а маска огибающей для сигналов NB, FB, DB и SB полного TDMA кадра - на рис. 1.8. Различные формы огибающих излучаемых сигналов соответствуют разным длительностям интервала АВ (88 бит) по отношению к другим указанным интервалам полного TDMA кадра (148 бит). Нормы на спектральную характеристику излучаемого сигнала показаны на рис. 1.9.

Одна из особенностей формирования сигналов в стандарте GSM - использование медленных скачков по частоте в процессе сеанса связи. Главное назначение таких скачков (SFH - Slow Frequency Hopping) - обеспечение частотного разнесения в радиоканалах, функционирующих в условиях многолучевого распространения радиоволн. SFH используется во всех подвижных сетях, что повышает эффективность кодирования и перемежения при медленном движении абонентских станций. Принцип формирования медленных скачков по частоте состоит в том, что сообщение, передаваемое в выделенном абоненту временном интервале TDMA кадра (577 мкс), в каждом последующем кадре передается (принимается) на новой фиксированной частоте. В соответствии со структурой кадров время для перестройки частоты составляет около 1 мс.

В процессе скачков по частоте постоянно сохраняется дуплексный разнос 45 МГц между каналами приема и передачи. Всем активным абонентам, находящимся в одной соте, ставятся в соответствие ортогональные формирующие последовательности, что исключает взаимные помехи при приеме сообщений абонентами в соте. Параметры последовательности переключения частот (частотно-временная матрица и начальная частота) назначаются каждой подвижной станции в процессе установления канала. Ортогональность последовательностей переключения частот в соте обеспечивается начальным частотным сдвигом одной и той же (по алгоритму формирования) последовательности. В смежных сотах используются различные формирующие последовательности.

Комбинированная TDMA/FDMA схема организации каналов в стандарте GSM и принцип использования медленных скачков по частоте при передаче сообщений во временных кадрах показаны на рис. 1.10, 1.11. Для сравнения можно отметить, что по результатам экспериментальных исследований, проведенных на действующих сетях GSM, пространственное разнесение приемных антенн на базовой станции дает выигрыш 3-4 дБ.

Принятая структура ТDМА кадров и принципы формирования сигналов в стандарте GSM в совокупности с методами капельного кодирования позволили снизить требуемое для приема отношение сигнал/помеха до 9 дБ, тогда как в стандартах аналоговых сотовых сетей связи оно составляет 17-18 дБ.

СПИСОК ЛИТЕРАТУРЫ

 

1. Бокс Дж., Дженкинс Г. Анализ временных рядов. Пер. с. англ.-М.: Мир, 1974, вып.1.- 406с.

2. Кармалита В.А. Цифровая обработка случайных колебаний.-М: Машиностроение, 1986.-80с.

3. Грант П.М. и др. Адаптивные фильтры.-М.: Мир, 1988.-392 с.

4. Коротаев Г.А. Эффективный алгоритм кодирования речевого сигнала на скорости 4, 8 кбит/с и ниже. //Зарубежная радиоэлектроника.1996. N3.

5. Андрианов В.И., Соколов А.В. Средства мобильной связи.-СПб. Санкт-Петербург. 1998.-256с.

6. Громаков Ю.А. Стандарты и системы подвижной связи. Москва. 1997. 239с.

7. Ратынский М.В. Основы сотовой связи. М. Радио и связь. 2000. 248с.

8. Ламекин В.Ф. Сотовая связь. Ростов на Дону. Изд-во Феникс. 1997.-176с.

9.Сукачев Э.А. Сотовые сети радиосвязи с подвижными объектами: Учебн пособие. - Изд. 2-е, испр. и дополн. - Одесса: УГАС, 2000. - 119с

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.