Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Перевірка гетероскедастичності на основі критерію m
Цей метод застосовується тоді, коли вихідна сукупність спостережень досить велика. Розглянемо відповідний алгоритм. Крок 1. Вихідні дані залежної змінної Y розбиваються на k груп відповідно до зміни рівня величини Y. Крок 2. Закожною групою даних обчислюється сума квадратів відхилень: Крок 3. Визначається сума квадратів відхилень в цілому по всій сукупності спостережень: Крок 4. Обчислюється параметр : де n — загальна сукупність спостережень; nr — кількість спостережень r -ї групи. Крок 7. Обчислюється критерій: який наближено відповідатиме розподілу при ступені свободи , коли дисперсія всіх спостережень однорідна. Тобто якщо значення не менше за табличне значення при вибраному рівні довіри і ступені свободи , то спостерігається гетероскедастичність. Приклад 7.2. Для даних, які наведено в прикладі 7.1, перевіримо наявність гетероскедастичності згідно з критерієм m. Розв’язання. Крок 1. Розіб’ємо дані, які наведені в табл. 7.1, на три групи, по шість спостережень у кожній.
Крок 2. Обчислимо суму квадратів відхилень індивідуальних значень кожної групи від свого середнього значення: 2.1. 2.2. Крок 3. Знайдемо суму квадратів відхилень за всіма трьома групами: = S 1 + S 2 + S 3 = 0, 05313 + 0, 2822 + 1, 1703 = 1, 5056. Крок 4. Обчислимо параметр Крок 5. Знайдемо критерій Цей критерій наближено задовольняє розподіл c2 з k – 1 = 2 ступенями свободи. Порівняємо значення критерію з табличним значенням критерію c2 з k – 1 = 2 ступенями свободи при рівні довіри 0, 99 c2кр= 9, 21. Оскільки m > c2кр, то дисперсія може змінюватись, тобто для даних табл. 7.1 спостерігається гетероскедастичність.
|