Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Основные термодинамические параметры и уравнения состояния рабочего телаСтр 1 из 18Следующая ⇒
Работа тепловых машин осуществляется с помощью рабочего тела, в качестве которого в подавляющем большинстве случаев используются вещества в газообразном состоянии. Газы обладают способностью значительно изменять свой объем под воздействием внешних условий, а это необходимо для работы тепловых машин. Свойства рабочих тел зависят от того, в каких условиях они находятся. Величины, характеризующие состояние рабочих тел, называются параметрами состояния. В случае отсутствия внешних силовых полей, а также при малом их воздействия на рабочее тело основными термодинамическими параметрами, полностью характеризующими его состояние, являются давление, удельный объем и абсолютная температура. Давление p представляет собой нормальную составляющую силы, действующей на поверхность, отнесенную к величине площади этой поверхности. В единицах СИ сила измеряется в ньютонах, поверхность – в квадратных метрах, отсюда единица измерения давления – Н/м2. Эта единица получила название паскаль (Па). Так как эта единица очень мала, то на практике используются более крупные кратные единицы: килопаскаль (1 кПа = 103 Па) или мегапаскаль (1 МПа = 106 Па). Однако следует помнить, что во все термодинамические соотношения, записанные в СИ, необходимо подставлять давление р, выраженное в основных единицах, т.е. в паскалях. Удельный объем v представляет собой выраженный в кубический метрах объем 1 кг массы газа. В случае замкнутой системы изменение удельного объема обусловлено только изменением ее объема. При этом если удельный объем уменьшается, то система подвергается сжатию. Если удельный объем увеличивается, то система расширяется. Температура является мерой средней кинетической энергии молекул, т.е. мерой скорости их теплового движения. Чем эта скорость больше, тем выше температура тела. Абсолютная температура, обозначаемая буквой Т, характеризует степень нагретости тела и измеряется в кельвинах (К), на практике применяется так называемая Международная практическая шкала температуры, измерение в которой обычно производится в градусах Цельсия (º С). Обозначается эта температура буквой t. Между температурой, выраженной в кельвинах и в градусах Цельсия, существует следующая связь: T = t + 273, 15 K. Нужно помнить, что термодинамическим параметром состояния является только абсолютная температура Т. Параметры состояния равновесной термодинамической системы связаны между собой зависимостью, называемой уравнением состояния. Уравнение состояния для одного килограмма вещества называется уравнением Клайперона: pv = R0T, где R0 – постоянная величина, которая имеет название удельной газовой постоянной, Дж/(кг· К). Значения удельной газовой постоянной берут из таблиц приложений в учебника [1]. Уравнение состояния для одного киломоля вещества называется уравнением Клайперона–Менделеева: pVμ =μ R0T, где Vμ – объем одного киломоля идеального газа при параметрах р и Т; μ R0=Rμ =8314, 31 – универсальная газовая постоянная, Дж/(кмоль· К).
|