Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Алгоритм Данцига
Одним із методів пошуку всіх найкоротших шляхів у зваженому орієнтованому графі є алгоритм Данцига. Його складність становить , де – кількість вершин графа. Розглянемо схему роботи алгоритму.
Перенумеруємо всі вершини графа числами від до , де – розмірність графа, який віддзеркалює топологію мережі. Кожному ребру відповідає певний ваговий коефіцієнт. Якщо ребра немає, то значення коефіцієнта рівне нескінченності. Вихідними даними для алгоритму є матриця вагових коефіцієнтів. Ідея полягає в послідовному обчисленні за допомогою рекурентної процедури під матриць найкоротших шляхів зростаючої розмірності . Кожна така матриця, фактично, є матрицею найкоротших шляхів під графа з вершинами від до .
Деякі позначення:
– розмірність графа, який віддзеркалює топологію мережі;
– множина цілих чисел від до ;
– довжина ребра з вершини в ;
– довжина найкоротшого знайденого шляху з в ;
– шлях з вершини до через вершину ;
– предикат, значенням якого буде істина, якщо існує ребро з вершини в ;
– предикат, значенням якого буде істина, якщо існує шлях з вершини в ;
– кількість ребер на шляху з в ;
– встановлення шляху .
|