Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Математические понятия






Понятия, которые изучаются в начальном курсе математику, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др. Третью составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением. Как же изучить такое обилие самых разных понятий? Прежде всего, надо иметь представление о понятии как логической категории и особенностях математических понятий. В логике понятия рассматривают как форму мысли, отражающую объекты (предметы или явления) в их существенных и общих свойствах. Языковой формой понятия является слово или группа слов. Составить понятие об объекте - это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие их свойства: цвет, массу, твердость и т.д. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура». Результатом абстрагирования являются и такие математические понятия, как «число» и «величина». Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства. Среди свойств объекта различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата ABCD свойство «сторона AD горизонтальна». Если квадрат повернуть, то сторона AD окажется расположенной по-другому (рис. 26).

Поэтому, чтобы понимать, что представляет собой данный математический объект, надо знать его существенные свойства. Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат». Вообще объем понятия - это множество всех объектов, обозначаемых одним термином. Любое понятие имеет не только объем, но и содержание. Содержание понятия- это множество всех существенных свойств объекта, отраженных в этом понятии. Рассмотрим, например, понятие «прямоугольник». Объем понятия - это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д. Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.). Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи. Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, с,..., z. Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В. Если А В (А ≠ В), то говорят, что понятие а - видовое по отношению к понятию b, а понятие b - родовое по отношению к понятию а. Например, если а - «прямоугольник», b - «четырехугольник», то их объемы А и В находятся в отношении включения (А В и А ≠ В), поскольку всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник». Если А = В, то говорят, что понятия а и b тождественны. Например, тождественны понятия «равносторонний треугольник» и «равноугольный треугольник», так как их объемы совпадают. Если множества А и В не связаны отношением включения, то говорят, что понятия а и b не находятся в отношении рода и вида и не тождественны. Например, не связаны такими отношениями понятия «треугольник» и «прямоугольник». Рассмотрим подробнее отношение рода и вида между понятиями. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник». Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм». В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику. Так как объем понятия - множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера. Установим, например, отношения между следующими парами понятий а и Ь, если: 1) а - «прямоугольник», b - «ромб»; 2) а - «многоугольник», b - «параллелограмм»; 3) а - «прямая», b - «отрезок». В случае 1) объемы понятий пересекаются, но не одно множество не является подмножеством другого (рис. 27).

Следовательно, можно утверждать, что данные понятия а и b не находятся в отношении рода и вида. В случае 2) объемы данных понятии находятся в отношении включения, но не совпадают - всякий параллелограмм является многоугольником, но не наоборот (рис. 28). Следовательно, можно утверждать, что понятие «параллелограмм» - видовое по отношению к понятию «многоугольник», а понятие «многоугольник» - родовое по отношению к понятию «параллелограмм».

В случае 3) объемы понятий не пересекаются, так как ни про один отрезок нельзя сказать, что он является прямой, и ни одна прямая не может быть названа отрезком (рис. 29).

Следовательно, данные понятия не находятся в отношении рода и вида. О понятиях «прямая» и «отрезок» можно сказать, что они находятся в отношении целого и части: отрезок- часть прямой, а не ее вид. И если видовое понятие обладает всеми свойствами родового понятия, то часть не обязательно обладает всеми свойствами целого. Например, отрезок не обладает таким свойством прямой, как ее бесконечность.
Вопрос 17. Понятие бинарного отношения на множестве. Способы задания отношений, их свойства. Отношение эквивалентности и его связь с разбиением множества на классы. Отношение порядка, упорядоченность множества.

В математике чаще всего рассматриваются отношения между двумя объектами. Их называют бинарными. Отношением между элементами множества Х или отношением на множестве Х называется всякое подмножество декартова произведения Х ´ Х. Другими словами: бинарное отношение – это соответствие, заданное на одном и том же множестве Х.

Обозначают отношения прописными буквами латинского алфавита: Р, Q, R. Поскольку отношение есть частный случай соответствия, то и способы задания отношений будут те же, что и для соответствий.

Рассмотрим отношение «меньше», заданное на множестве Х = {1; 2; 3; 4}. Отношение задано указанием характеристического свойства. Зададим его перечислением: R = {(1; 2); (1; 3); (1; 4); (2; 3); (2; 4); (3; 4)}. Также данное отношение можно задать

     
 
     

 

         
         
         
         
         

Таблицей, графом, графиком. Точки, изображающие элементы множества Х – вершины графа, стрелки – ребра графа.

Пример. Построим граф отношения «х кратно у», Х = {1; 2; 3; 4}.

 
 

Каждое число является делителем самого себя, поэтому для каждой точки множества рисуем стрелку, начало и конец которой совпадают (стрелку на графе, у которой начало и конец совпадают, называют петлей).

Графы отношений удобно использовать при решении логических задач, в том числе и в начальной школе.

Способы задания отношений:

1) с помощью подходящего предиката;

2) множество упорядоченных пар;

3) в графической форме: пусть A и B – два конечных множества и r – бинарное отношение между ними. Элементы этих множеств изображаем точками на плоскости. Для каждой упорядоченной пары отношения r рисуют стрелку, соединяющую точки, представляющие компоненты пары. Такой объект называется ориентированным графом или орграфом, точки же, изображающие элементы множеств, принято называть вершинами графа.

4) в виде матрицы: пусть A={a1, a2, …, an} и B={b1, b2, …, bm}, r – отношение на A´ B. Матричным представлением r называется матрица M=[mij] размера n´ m, определенная соотношениями

Бинарное отношение называется отношением эквивалентности, если отвечает условиям:

Рефлексивность: , ;

Симметричность: , то , ;

Транзитивность: и , то , .

Если связан с , будем писать и говорить, что эквивалентен .

Определение

Пусть – отношение эквивалентности, тогда подмножество называется классом эквивалентности.

Теорема

Любое отношения эквивалентности на множестве образует разбиение множества на классы эквивалентности. Обратно, любое разбиение множества задает на нем отношение эквивалентности.

Отношение R на множестве М называется отношением строгого порядка, если оно антирефлексивно и транзитивно.Отношение R строго порядка:

Имеет интерпретации: «элемент х предпочтительнее у», «х больше у», «х предшествует у», «х включает в себя у».

Множество М с заданным на нем отношением строгого порядка R называют упорядоченным множеством.

Отношение R на множество М называется отношением нестрогого порядка, если оно может быть представлено в виде: , где R1- строгий порядок на М, а Е– диагональное отношение.

Вопрос 18. Понятие соответствия между двумя множествами. Способы задания соответствий. Соответствие обратное данному. Взаимно однозначные соответствия. Равномощные множества.

Р Ì Х ´ У  
Соответствие между элементами множеств Х и У – это любое подмножество декартова произведения множества Х на множество У.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.