Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Кубышкин А.Б.






А.Б. КУБЫШКИН

 

 

ОСНОВЫ МЕХАНИКИ

Учебно-методическое пособие

 

 

Самара

Самарский государственный технический университет

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

 

Кафедра «Механика»

 

 

А.Б. КУБЫШКИН

 

 

ОСНОВЫ МЕХАНИКИ

Утверждено редакционно-издательским советом университета

в качестве учебно-методического пособия

 

 

Самара

Самарский государственный технический университет


УДК. 621

К 88

Р е ц е з е н т – канд. техн. наук, доц. Г.Н. Костина

 

 

Кубышкин А.Б.

К 88 Основы механики: учеб.-метод. пособ. / А.Б. Кубышкин. – Самара: Самар. гос. техн. ун-т, 2009. – 74 с.

 

Изложены основные положения курса «Механика» с примерами решения задач и контрольными вопросами к каждому разделу. Даны вопросы и задания для самопроверки и подготовки к экзаменам.

Предназначено для студентов немашиностроительных специальностей заочного обучения и может быть полезно при изучении дисциплин «Механика», «Прикладная механика» и «Техническая механика».

 

 

УДК. 621

К 88

 

Ó А.Б. Кубышкин, 2009

Ó Самарский государственный

технический университет, 2009

 


1. ОСНОВНЫЕ ПОНЯТИЯ О МАШИНАХ И МЕХАНИЗМАХ

1.1. Структура машин и механизмов

Большинство современных машин создается по схеме:

Машина – устройство, осуществляющее механические движения, необходимые для выполнения рабочего процесса с целью замены или облегчения физического и умственного труда человека.

Механизм является составной частью машины и представляет собой совокупность взаимосвязанных деталей и узлов, обеспечивающих выполнение заданных функций.

Привод состоит из двигателя и передаточного механизма. Он предназначен для обеспечения кинематических и силовых характеристик исполнительного механизма.

Передаточный механизм предназначен для передачи энергии от двигателя к исполнительному механизму с преобразованием вида и направления движения, а также изменения кинематических и силовых характеристик.

Исполнительный механизм предназначен для выполнения непосредственно рабочего процесса (обработка, транспортировка, перемешивание и др.).

1.2. Простые передачи. Основные характеристики
и расчетные зависимости

Необходимость введения передаточного механизма обусловлена способностью выполнения им различных функций:

- передача энергии (мощности);

- преобразование (уменьшение или увеличение) сил или моментов сил;

- преобразование (уменьшение или увеличение) скорости движения звеньев;

- преобразование вида движения (вращательное в поступательное или наоборот) и изменение направления движения;

- разделение потоков движения от двигателя к нескольким исполнительным органам рабочей машины.

Среди передаточных механизмов широкое применение получили передачи вращательного движения, которые можно разделить на две основные группы:

- передачи, основанные на использовании сил трения (фрикционные, ременные);

- передачи, основанные на использовании зацепления (зубчатые, червячные, винтовые, цепные).

Рассмотрим простые передачи зацеплением, каждая из которых содержит два подвижных звена (валы с закрепленными на них зубчатыми колесами), совершающих вращательное движение, и одно неподвижное звено (опоры валов). На рис. 1.1 представлен внешний вид передач и варианты изображения на структурных схемах.

               
 
Цилиндрическая передача с внешним зацеплением
 
Цилиндрическая передача с внутренним зацеплением
 
 
   
Коническая передача
 
Червячная передача

 


 

 

 


 

Рис. 1.1

Цилиндрические передачи характеризуются параллельным расположением осей зубчатых колес а и b и отличаются расположением зацепления: с внешним зацеплением и с внутренним зацеплением. В конической передаче оси зубчатых колес а и b пересекаются. В червячной передаче оси червяка а и червячного колеса b перекрещиваются.

Основной кинематической характеристикой передаточных механизмов является передаточное отношение U, которое представляет собой соотношение угловых скоростей w или частот вращения n входного (ведущего) а и выходного (ведомого) b звеньев. При этом обозначение передаточного отношения имеет два индекса, указывающие направление передачи движения от звена а к звену b:

.

Частота вращения n связана с угловой скоростью w соотношением:

, об/мин.

Передачи, уменьшающие скорость вращения, называются редукторами. В них передаточное отношение реализуется за счет соотношения диаметров d или числа зубьев Z ведомого b и ведущего а зубчатых колес в зацеплении:

.

Таким образом, редукторы уменьшают скорость вращения в передаточное число раз за счет соотношения чисел зубьев зацепляемых колес:

.

При этом ведущее зубчатое колесо в цилиндрических и конических передачах, имеющее меньшее число зубьев, называют шестерней, а ведомое – колесом.

Вращающий момент в редукторах увеличивается в передаточное число раз с учетом потерь на трение, оцениваемых коэффициентом полезного действия η:

.

Коэффициент полезного действия (h) – это отношение полезной мощности Рn на выходном звене, расходуемой на реализацию полезной работы в производственном или технологическом процессе, к мощности на входном звене, затраченной двигателем :

.

КПД учитывает потери мощности на преодоление сил трения в кинематических парах и является важным критерием оценки эффективности использования энергии и технического совершенства механизма.

При решении задач можно использовать следующие значения КПД для различных передач: цилиндрическая – η = 0, 97; коническая – η = 0, 96; червячная – η = 0, 95 (1 – U / 200), где U – передаточное отношение в червячной передаче.

1.3. Многоступенчатые передаточные механизмы

При необходимости реализации передаточного отношения, величина которого превышает рекомендуемые пределы для отдельных передач, используют последовательное расположение передач (ступеней) в передаточном механизме.

В этом случае общее передаточное отношение (U общ) и общий КПД (hобщ) многоступенчатого передаточного механизма определяют как произведение передаточных отношений и КПД всех его ступеней (передач):

;

,

где m – количество ступеней в механизме.

Передаточное отношение одной или группы ступеней m – ступенчатого механизма характеризует способность изменять частоту вращения n и вращающий момент Т при передаче движения между ведущим i и ведомым k звеньями рассматриваемой части механизма:

.

Полезную мощность на выходном валу механизма (Рвых, Вт) рассчитывают по зависимости:

,

где Твых, Нм и nвых, об / мин – соответственно вращающий момент и частота вращения выходного вала механизма.

Требуемую (расчетную) мощность двигателя () определяют с учетом потерь в узлах трения механизма:

.

По расчетной мощности и частоте вращения подбирают по каталогу стандартный электродвигатель, имеющий ближайшее большее значение мощности .

 

1.4. Примеры решения задач

Задача 1. Провести структурный, кинематический и силовой анализ изображенного на рис. 1.2 привода, содержащего электродвигатель и редуктор.

Заданы параметры:

– числа зубьев , , , , , ;

– частота вращения вала двигателя об/мин;

– вращающий момент на выходном валу редуктора Нм.







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.