Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Постановка задачи. Дано нелинейное алгебраическое уравнение (НАУ) вида






Дано нелинейное алгебраическое уравнение (НАУ) вида

(1.1)

Нелинейность уравнения означает, что аргумент функции входит в функцию в некоторой степени или под знаком функции (тригонометрической, логарифмической и т.п.), и, следовательно, графиком этой функции не является прямая линия. Решить уравнение – это значит найти такое что .Значение называют корнем уравнения. На графике функции корню соответствует точка, в которой функция пересекает ось абсцисс. Нелинейное уравнение, в общем случае, может иметь несколько корней, как, например, на рис. 1.1 корнями являются точки , , .

Все методы решения нелинейных алгебраических уравнений вида(1.1) можно разделить на два класса. Это точные (аналитические) и приближенные (итерационные) методы. В точных методах корень уравнения находится при помощи некоторой алгебраической формулы. Примерами служат решения квадратных уравнений, некоторых видов тригонометрических, логарифмических, показательных уравнений и т.д., способы решения которых известны нам из школьного курса.

На практике часто встречаются функции столь сложного вида, что процесс нахождения точного решения либо чрезвычайно затруднен, либо вовсе невозможен. В этом случае приходится прибегать к приближенным методам решения. В приближенных методах процесс нахождения решения (корней уравнения), вообще говоря, бесконечен. В этом случае решение ищется в виде бесконечной последовательности , такой, что , где – это индекс, указывающий на номер приближения или итерации. По определению предела, для любого сколь угодно малого найдется такое N, что при n> N, . Члены последовательности называются последовательными приближениями к решению, или итерациями. Наперед заданное число называют точностью метода, а N – это количество итераций, которое необходимо выполнить, чтобы получить решение с точностью .

Существует различные методы нахождения приближенного решения, т.е. способы построения последовательности итераций , однако все они имеют общие этапы, представленные на рис. 1.2 в виде блок-схемы.

Для выхода из итерационного процесса используют различные условия. Наиболее часто используется следующий критерий остановки итерационного процесса: , т.е. процесс нахождения следующего приближения останавливается, когда разница между соседними итерациями становится малой. Также для окончания итерационного процесса используется условие ÷ f (xn)÷ < e, где f (xn)есть невязка метода.

Прежде, чем использовать приближенный метод, уравнение необходимо исследовать на наличие корней и уточнить, где эти корни находятся, т.е. найти интервалы изоляции корней. Интервалом изоляции корня называется отрезок, на котором корень уравнения существует и единственный

Необходимое условие существования корня уравнения на отрезке [a, b]: Пусть непрерывна и (т.е. на концах интервала функция имеет разные знаки). Тогда внутри отрезка [ a, b ] существует хотя бы один корень уравнения (1.1).

Достаточное условие единственности корня на отрезке [a, b]: Корень будет единственным, если и производная функции не меняет знак на отрезке [ a, b ], т.е. является монотонной на отрезке от до . В этом случае отрезок [a, b] будет интервалом изоляции.

Если уравнение имеет несколько корней, то для каждого из них нужно найти свой интервал изоляции.

Существуют различные способы исследования функции: аналитический, табличный, графический.

Аналитический способ состоит в исследовании поведения функции путем нахождении ее экстремумов, исследование ее поведения при и нахождение участков возрастания и убывания функции.

Графический способ – это построение графика функции и определение числа корней по количеству пересечений графика с осью .

Табличный способ это построение таблицы, состоящей из столбца аргумента и столбца значений функции . О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

ПРИМЕР 1.1. Решить нелинейное алгебраическое уравнение . Исследуем уравнение на интервалы изоляции корней аналитическим способом. Для этого найдем производную функции . Далее определим экстремумы функции, где, как известно, производная принимает нулевое значение:

, откуда , .

Значения функции в экстремальных точках: . Так как , то при , и при . Кроме того, , . Следовательно, на интервале функция возрастает от до 11, 392; на интервале - убывает до -9, 392, и на интервале возрастает до . Т.е. уравнение имеет три корня. Найдем интервалы изоляции для каждого из корней.

Рассмотрим для первого корня отрезок . На левом конце отрезка функция принимает значение , а на правом . Так как внутри этого отрезка производная положительна, то функция является монотонно возрастающей, т.е. меняет знак только один раз. Следовательно, отрезок является интервалом изоляции первого корня. Рассмотрим для второго корня отрезок : , , при , т.е. этот отрезок является интервалом изоляции второго корня.

Рассмотрим для третьего корня отрезок : , , при , т.е. этот отрезок является интервалом изоляции третьего корня.

Табличный способ:

В интервале от -5 до 6 с шагом 1 вычислим значения функции. Результаты представим в виде таблицы:

-5 -4 -3 -2 -1              
f (x) -279 -161 -79 -27         -7 -9    

 

Из таблицы видно, что смена знака функции происходит три раза на интервалах , и . Эти интервалы и можно выбрать в качестве интервалов изоляции корней.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.