Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тактильная чувствительность 69 страница






Конструктивные схемы теплообменников весьма разнообразны и зависят от их назначения, уровня темп-р и типа теплоносителя. По принципу действия различают рекуперативные теплообменники, в которых теплота от одного вещества (теплоносителя) к другому передаётся через твёрдую, обычно металлическую, стенку; р егенеративныс теплообменники, в к-рых теплота воспринимается и отдаётся спец. насадкой, поочерёдно омываемой нагревающим и нагреваемым телами; смесительные теплообменники, в к-рых передача теплоты осуществляется при соприкосновении веществ. Наиболее распространены трубчатые рекуперативные теплообменники, где один из теплоносителей протекает внутри труб, а другой - в межтрубном пространстве. Осн. характеристики рекуперативных теплообменников: размер поверхности теплообмена и коэфф. теплопередачи, представляющий собой количество теплоты, передаваемой через 1 м 2 поверхности теплообмена при разности темп-р между теплоносителями в 1 °С. Этот коэфф. для данного теплообменника зависит от типа теплоносителей, их параметров и скоростей движения.

Значит, доля получаемой теплоты в холодное время года идёт на бытовое потребление, т. е. компенсацию потерь теплоты через стены зданий, потерь, связанных с вентиляцией помещений и пр. В большинстве городов СССР используется отопление от ТЭЦ и от центр, котельных. В этом случае на ТЭЦ или в котельной устанавливаются бойлеры, в к-рых подогревается сетевая вода, направляемая в дома для отопления. В качестве отопительных приборов применяются либо металлич. оребрённые теплообменники (радиаторы), устанавливаемые непосредственно в помещении, либо трубчатые нагреватели, вмонтированные в стеновые панели.

В отд. зданиях используется индивидуальное отопление. В этом случае в подвальном помещении здания размещается водогрейный котёл, и нагретая в нём вода в результате естеств. циркуляции протекает через отопит, приборы. В сел. местности в жилых домах используется печное отопление. В районах с дешёвой электроэнергией иногда применяют электрическое отопление с помощью электрич. калориферов, электрокаминов и др. С теоретич. точки зрения непосредственное отопление с помощью электроэнергии нецелесообразно, т. к., напр., с помощью теплового насоса можно получить для целей отопления больше теплоты, чем затрачено электроэнергии. При этом на отопление пойдёт как количество теплоты, к-рое эквивалентно затраченной электроэнергии, так и нек-рое количество теплоты, к-рое будет отобрано от окружающей среды и " поднято" на более высокий температурный уровень. Однако тепловые насосы не получили распространения в связи с их высокой стоимостью.

Для получения механич. работы за счёт теплоты применяют тепловые двигатели - основные энергетические агрегаты заводских, транспортных и пр. теплосиловых установок; в электрич. энергию теплота преобразуется в магнитогидродинамических генераторах и термоэлектрических генераторах и т. д. В сер. 70-х гг. 20 в. в мире на производство электроэнергии расходуется ок. 30% всей получаемой теплоты.

Теоретические основы теплотехники. Процессы генерации и использования теплоты базируются на теоретич. основах Т.- технич. термодинамике и теплопередаче.

В термодинамике рассматриваются свойства макроскопич. систем, находящихся в состоянии термодинамич. равновесия, и процессы перехода между этими состояниями. Равновесное состояние полностью характеризуется небольшим числом физич. параметров. Напр., состояние однородных жидкости или газа определяется заданием двух из трёх величин: темп-ры, объёма, давления (см. Клапейрона уравнение, Ван-дер-Ваалъса уравнение). Энергетич. эквивалентность теплоты и работы устанавливается первым началом термодинамики. Второе начало термодинамики определяет необратимость макроскопич. процессов, протекающих с конечной скоростью, и лимитирует максимальное значение кпд при преобразовании теплоты в работу.

Теплопередача изучает теплообмен (процессы переноса теплоты) между теплоносителями через разделяющие их пространство или твёрдую стенку, через поверхность раздела между ними, В теплотехнич. устройствах теплота может передаваться лучистым теплообменом, конвекцией, теплопроводностью.

Лучистый теплообмен (теплообмен излучением) характерен для топок и камер сгорания, а также для нек-рых печей. Общая энергия, излучаемая к.-л. телом, пропорциональна темп-ре тела в четвёртой степени (см. Стефана - Болъцмана закон излучения). При данной темп-ре наибольшее количество энергии отдаёт абсолютно чёрное тело. Реальные тела характеризуются излучат, способностью (интегральной или спектральной ), показывающей, какую долю от энергии абсолютно чёрного тела излучает данное тело (во всём диапазоне волн или в узкой полосе, соответствующей определённой длине волны ) при той же темп-ре. Интегральная излучат, способность твёрдых тел обычно лежит в пределах от 0, 3 до 0, 9. Газы при нормальных темп-pax имеют очень малую излучательную способность, возрастающую с увеличением толщины излучающего слоя.

Теплообмен конвекцией осуществляется в жидкостях, газах или сыпучих средах потоками вещества. С помощью конвекции ведётся нагревание или охлаждение жидкостей или газов в различных теплотехнич. устройствах, напр, в воздухонагревателях и экономайзерах котлоагрегатов. Теплообмен конвекцией наиболее характерен для случая смывания твёрдой стенки турбулентным потоком жидкости или газа. При этом теплота к стенке или от неё переносится за счёт турбулентного перемешивания потока (см. Турбулентное течение). Интенсивность этого процесса характеризуется коэфф. теплоотдачи. См. также Конвективный теплообмен.

Теплообмен теплопроводностью характерен для твёрдых тел и для ламинарных потоков жидкости и газа (см. Ламинарное течение), омывающих твёрдую стенку. Теплота при этом переносится в результате микроскопич. процесса обмена энергией между молекулами или атомами тела. На практике процесс переноса теплоты часто обусловливается совместным действием перечисленных видов теплообмена.

Лит.: Мелентьев Л. А., Стыриков и ч М. А., Штейнгауз Е. О., Топливно-энергетический баланс СССР, М.-Л., 1962; Общая теплотехника, М.-Л., 1963; И с ач е н к о В. П., Осипова В. А., С' у к ом е л А. С., Теплопередача, 3 изд., М.. 1975; Хазен М. М., Казакевич Ф. П., Грицевский М. Е., Общая теплотехника, М., 1966; К и р и л л и н В. А., С ыч е в В. В., Шейндлин А. Е., Техническая термодинамика, 2 изд., М., 1974; С т ыр и к о в и ч М. А., Мартынова О. И., Миропольский 3. Л., Процессы генерации пара на электростанциях, М., 1969. В. А. Кириллин, Э. Э. Шпилърайн.

ТЕПЛОТЕХНИЧЕСКИЙ ИНСТИТУТ Всесоюзный научно-исследовательский им. Ф.Э. Дзержинского (ВТИ ) Мин-ва энергетики и электрификации СССР, головной ин-т отрасли по проблемам эксплуатации тепловых и атомных электростанций. Осн. в 1921 в Москве. В 1930 ин-ту присвоено имя Ф. Э. Дзержинского. Проведённые ВТИ исследования (1921-41 ) позволили включить в топливный баланс страны низкосортные топлива и решить мн. вопросы создания отечеств, энергетич. оборудования. В период Великой Отечеств, войны 1941-45 и в первые послевоенные годы работа ин-та была связана с восстановлением и наладкой тепловых электростанций. В 50-60-х гг. в ВТИ были разработаны науч. основы для перехода энергетики СССР к высоким и сверхвысоким, а в дальнейшем и к сверхкритич. параметрам пара в теплоэнергетич. установках. ВТИ - одна из ведущих организаций по внедрению в стране систем теплофикации. С нач. 60-х гг. в ин-те разрабатывается паросиловое оборудование для атомных электростанций.

Значит, вклад в развитие энергетики и в подготовку науч. кадров внесли учёные ин-та: проф. Л. К. Рамзин, ч л.-корр. АН СССР А. В. Щегляев, проф. Ф. Г. Прохоров и И. Э. Ромм.

В ведении ВТИ спец. конструкторское бюро, специализированные филиалы в гг. Челябинске и Красноярске, отделы в гг. Горловке и Харькове, 2 экспериментальные электростанции. Ин-т имеет аспирантуру, ему дано право принимать к защите кандидатские и докторские диссертации. Издаёт " Труды ВТИ". Награждён 2 орденами Трудового Красного Знамени (1946, 1971 ). в. К. Рубин.

ТЕПЛОУСТОЙЧИВОСТЬ здания, способность здания сохранять относит, постоянство темп-ры воздуха в помещениях при периодич. колебаниях темп-ры наружного воздуха и теплового потока, проходящего через ограждающие конструкции здания. Т. обеспечивает поддержание в помещениях необходимого теплового комфорта как в условиях неравномерной отдачи тепла отоплением, так и при воздействии солнечной радиации и др. климатич. факторов. Т. здания зависит от Т. его внеш. ограждающих конструкций, а также от теплоёмкости внутр. конструкций и оборудования. Для определения Т. ограждающих конструкций применяют методы расчёта, вытекающие из решения дифференциальных ур-ний для неустановившихся условий теплообмена. Наименьшая Т. характерна для зданий с большим количеством светопроёмов и лёгкими наружными ограждениями. Лит. см. при ст. Строительная теплотехника.

ТЕПЛОУХОВ Сергей Александрович [3(15 ). 3.1888, с. Ильинское Пермской губ., - 1933, Ленинград], советский археолог-сибиревед. В 1920-32 вёл археол. исследования разновременных археол. памятников в басе, верхнего течения Енисея (на терр. Хакасии, Тувы), в Киргизии (в котловине оз. Иссык-Куль). Участвовал в раскопках могильника Ноин-Ула в Монголии (1924). Т. создал первую классификацию археол. культур Юж. Сибири.

Соч.: Древние погребения в Минусинском крае, в сб.: Материалы по этнографии, т. 3, в. 2, Л., 1927 (Этнографический отдел Гос. Русского музея); Опыт классификации древних металлических культур Минусинского края, там же, т. 4, в. 2, Л., 1929.

ТЕПЛОФИКАЦИОННАЯ ТУРБИНА, паровая турбина, предназначенная для одновременного получения электроэнергии от приводимого ею генератора и тепловой энергии в виде пара, полностью или частично отработавшего в ней. Подробнее о Т. т. см. в ст. Паровая турбина.

ТЕПЛОФИКАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ, тепловая электростанция, осуществляющая произ-во одновременно электроэнергии и тепла (в виде горячей воды или пара). См. Теплоэлектроцентраль.

ТЕПЛОФИКАЦИОННЫЙ КОТЁЛ, котлоагрегат теплоэлектроцентрали (ТЭЦ), обеспечивающий одновременное снабжение паром теплофикационных турбин и произ-во пара или горячей воды для технологич., отопит, и др. нужд. В отличие от котлов конденсационных электростанций, Т. к. обычно используют в качестве питат. воды возвращаемый загрязнённый конденсат. Для таких условий работы наиболее пригодны барабанные котлоагрегаты со ступенчатым испарением, с помощью к-рых можно получить чистый пар при сравнительно небольшой продувке котла. Для Т. к., установленных на ТЭЦ с преобладающими отопит, нагрузками, характерно различие сезонных (зимних и летних) режимов работы, что затрудняет постоянную работу Т. к. на оптимальных режимах. Поэтому на большинстве ТЭЦ Т. к. имеют поперечные связи по пару и по воде. В СССР на ТЭЦ наиболее распространены барабанные котлы паропроизводительностыо 420 т/ч (давление пара 14 Мн/ м 2, темп-ра 560 °С). С 1970 на мощных ТЭЦ с преобладающими отопит, нагрузками при возврате почти всего конденсата в чистом виде применяют моноблоки (см. Котёл-турбина блок) с прямоточными котлами паропроизводительностью 545 т/ч (25 Л/ н / м 2, 545 °С).

К Т. к. можно отнести и пиковые водогрейные котлоагрегаты, к-рые используют для дополнит, подогрева воды при повышении тепловой нагрузки сверх наибольшей, обеспечиваемой отборами турбин. При этом вода нагревается сначала паром в бойлерах до ПО-120 °С, а затем в котлах до 150-170 " С. В СССР эти котлы устанавливают обычно рядом с гл. корпусом ТЭЦ; в случае задержки сооружения ТЭЦ водогрейные Т. к. используют для временного обслуживания района вместо квартальных котельных. Применение сравнительно дешёвых пиковых водогрейных Т. к. для снятия кратковременных пиков тепловых нагрузок позволяет резко увеличить число часов использования осн. теплофикационного оборудования и повысить экономичность его эксплуатации.

Лит.: Пиковые водогрейные котлы большой мощности, М.- Л., 1964; Б у з н ик о в Е. Ф., Роддатис К. Ф., Б е рз и н ь ш Э. Я., Производственные и отопительные котельные, М., 1974. И. H. Розенгауз.

ТЕПЛОФИКАЦИЯ, централизованное теплоснабжение на базе комбинированного произ-ва электроэнергии и тепла на теплоэлектроцентралях. Термодинамическая эффективность производства электроэнергии по теплофикационному циклу обусловлена исключением, как правило, отвода тепла в окружающую среду, неизбежного при произ-ве электроэнергии по конденсационному циклу (см. Конденсационная электростанция). Благодаря этому существенно (на 40-50%) снижается удельный (в расчёте на 1 к е т -ч) расход топлива на выработку электроэнергии. По развитию Т. СССР занимает ведущее положение в мире. Мощность теплофикационных турбин, установленных на теплоэлектроцентралях, составляет ок. '/з мощности паровых турбин всех тепловых электростанций страны. За счёт комбинированного произ-ва электроэнергии и тепла в 1974 в СССР получена экономия топлива условного св. 30 млн. т.

Лит. см. при статьях Теплоснабжение, Теплоэлектроцентраль.

ТЕПЛОФИЛЬТР, отдельное приспособление или составная часть оптич. системы, предназначенные для удаления инфракрасных (тепловых ) лучей из светового потока, проходящего через эту систему. Тепловые лучи либо поглощаются (в поглощающих Т. ), либо выводятся из светового потока (напр., в интерференционных зеркалах " холодного света" ). Простейший Т. представляет собой стеклянную пластинку, пропускающую световые (видимые ) лучи и поглощающую тепловые. Т. применяют в осветителях биологич. микроскопов и микрофотоустановок - для защиты живых микроооъектов от вредного действия тепла, а также в различных проекционных приборах (см. Проекционный аппарат) - для предотвращения чрезмерного нагрева оригинала, изображение к-рого проецируется на экран

ТЕПЛОХОД, судно, приводимое в движение двигателем внутреннего сгорания; наиболее распространённый тип самоходного судна. Мощность от гл. судового двигателя Т. передаётся на движитель непосредственно или с помощью редуктора, иногда через соединит, муфты (механич., гидравлич. и др. ). Ранее Т. наз. также дизель-электроходы - суда с дизельными гл. двигателями и электрич. передачей мощности на гребные электродвигатели (см. Электроход).

Т. впервые построены в России: для работы на р. Волге - винтовой танкер " Вандал" (1903 ) с 3 двигателями мощностью по 88 кет (120 л. с.) и электропередачей на гребной вал, танкер " Сармат" (1904) с механич. приводом гребного вала, колёсное буксирное су дно " Мысль" (1907) и др.; для работы на Каспийском м. - танкер " Дело" (1908) с 2 гл. двигателями общей мощностью 735 к е т (1000 л. c.). Первая подводная лодка с 2 четырёхтактными реверсивными двигателями внутр. сгорания мощностью по 88 кет - рус. " Минога" (1908). За рубежом транспортные Т. появились в 1922 - в Дании был сооружён танкер " Зеландия" с 2 двигателями мощностью по 920 кет (1250 л. c.). В 1913 из 80 Т. мирового флота 70 принадлежали России.

Совершенствование судовых двигателей внутр. сгорания - повышение их кпд, уменьшение массы, габаритов, повышение надёжности, увеличение агрегатной мощности - способствовало вытеснению Т. судов с паровыми машинами. К 1930 в составе гражд. флота, по данным англ. " Регистра судоходства Ллойда", было ок. 10% Т. По тому же источнику, к сер. 1974 доля Т. возросла примерно до 88, 5% (учитывая суда вместимостью не менее 100 per. т), а их вместимость составила 63% от валовой вместимости мирового самоходного флота. Среди заказанных и строящихся к кон. 1974 судов дедвейтом не менее 2000 т Т. было ок. 83% по количеству судов, или ок. 43% по дедвейту, и ок. 63% по мощности гл. двигателей.

В качестве гл. двигателей на Т. применяют двух- и четырёхтактные, мало-, средне- и высокооборотные двигатели внутр. сгорания. В 1975 наибольшая агрегатная мощность судовых двигателей достигла 36300 к ет (48 000 л.с.) на паромах-Т. (Япония ), наибольшая мощность установки - 2 X 29 400 ке т (2 X X 40 000 л. c. ) на контейнеровозах (Япония ). При высокой мощности гл. двигателей Т. могут конкурировать с турбоходами. В составе вспомогательного оборудования машинного отделения Т.-воздушные компрессоры и баллоны со сжатым воздухом для пуска двигателей, система охлаждения поршней и цилиндров забортной и пресной водой, оборудование для очистки и подачи в двигатель под высоким давлением топлива и смазочного масла. Теплота отходящих газов от двигателей ср. и большой мощности на ходу используется для выработки пара в утилизационном котле; пар используют для произ-ва электроэнергии и др. судовых нужд. Э. Г. Логвинович.

ТЕПЛОЭЛЕКТРОПРОЕКТ, Всесоюзный проектный институт Мин-ва энергетики и электрификации СССР, осн. в Москве в 1924. Разрабатывает проблемы перспективного развития теплоэнергетики СССР, техническую документацию и технико-экономические обоснования строительства крупных тепловых и атомных электростанций и тепловых сетей, технические задания на новые виды оборудования для электростанций, схемы теплоснабжения пром. районов, городов и др. населённых пунктов, нормативные и методич. материалы. В составе ин-та отделения (в Москве, Ленинграде, Свердловске, Новосибирске, Горьком, Томске, Ташкенте, Киеве, Харькове, Львове, Ростове, Риге ), проектные и изыскательные отделы, лаборатории и экспериментальные базы. По проектам ин-та построены и сооружаются также крупные энергетич. объекты в ряде зарубежных стран. Ин-т публикует " Труды Теплоэлектропроекта". Награждён орденом Ленина (1962 ) и орденом Октябрьской Революции (1974 ).

ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ (ТЭЦ ), тепловая электростанция, вырабатывающая не только электрич. энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практич. целях отработавшего тепла двигателей, вращающих электрич. генераторы, является отличит, особенностью ТЭЦ и носит назв. теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР - ГРЭС ) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значит, экономии топлива, но и повышению чистоты во зду ш н ого бассейна, улучшению санитарного состояния населённых мест.

Исходный источник энергии на ТЭЦ -органич. топливо (на паротурбинных и газотурбинных ТЭЦ ) либо ядерное топливо (на планируемых атомных ТЭЦ ). Преимущественное распространение имеют (1976 ) паротурбинные ТЭЦ на органич. топливе (рис. 1 ), являющиеся наряду с конденсационными электростанциями осн. видом тепловых паротурбинных электростанций (ТПЭС ). Различают ТЭЦ пром. типа - для снабжения теплом пром. предприятий, и отопит, типа-для отопления жилых и обществ, зданий, а также для снабжения их горячей водой. Тепло от пром. ТЭЦ передаётся на расстояние до неск. км (преим. в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

Рис. 1. Общий вид теплоэлектроцентрали.

Осн. оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрич. энергию, и котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят паровая турбина и синхронный генератор. Паровые турбины, используемые на ТЭЦ, наз. теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0, 7 -1, 5 М н / м 2 (устанавливаются на ТЭЦ, снабжающих паром пром. предприятия); с конденсацией и отборами пара под давлением 0, 7 -1, 5 Мн/м1 (для пром. потребителей) и 0, 05-0, 25 Мн/м2 (для коммунальнобытовых потребителей); с конденсацией и отбором пара (отопительным ) под давлением 0, 05-0, 25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрич. мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, напр., бывает в летнее время на отопит. ТЭЦ ) они не вырабатывают электрич. мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (т. е. преим. на пром. ТЭЦ ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по " тепловому" графику, т. е. с минимальным " вентиляционным" пропуском пара в конденсатор. В СССР разработаны и строятся ТТ с конденсацией и отбором пара, в к-рых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимуществ. распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрич. нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по " электрическому" графику, с необходимой, полной или почти полной электрич. мощностью.

Электрич. мощность теплофикационных турбоагрегатов (в отличие от конденсационных ) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с пром. и отопит, отборами и Т-175 с отопит, отбором имеют одинаковый расход свежего пара (ок. 750 т/ч), но различную электрич. мощность (соответственно 100, 135 и 175 Мет). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (ок. 800 т). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицируются также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мет, так и самых крупных в мире ТТ на 250 Мет.

Давление свежего пара на ТЭЦ принято в СССР равным ~ 13-14 М н / м 3 (преимущественно ) и ~ 24-25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках - мощностью 250 Мет). На ТЭЦ с давлением пара 13-14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, т. к. на таких ТЭЦ он не даёт столь существенных технич. и экономич. преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мет на ТЭЦ с отопит, нагрузкой выполняют с промежуточным перегревом пара.

Тепловая нагрузка на отопит. ТЭЦ неравномерна в течение года. В целях снижения затрат на осн. энергетическое оборудование часть тепла (40-50% ) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого осн. энергетич. оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0, 5-0, 6 ). Подобным же образом можно покрывать пики тепловой (паровой ) пром. нагрузки (ок. 10-20% от максимальной ) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2 ). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде ), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные ). Выбор схемы определяется в значит, мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС ) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо - мазут и газ. Для защиты возд. бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС ) золоуловители (см. Газов очистка), для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200-250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значит, расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусств, охладителями - градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрич. генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащённые паротурбинными и газотурбинными агрегатами ) и атомные электростанции.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме; б -конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам; ПК - паровой котёл; ПП - пароперегреватель; ПТ - паровая турбина; - электрический генератор; К - конденсатор; П - регулируемый производственный отбор пара на технологические нужды промышленности; Т - регулируемый теплофикационный отбор на отопление; ТП - тепловой потребитель; ОТ -отопительная нагрузка; КН и ПН - конденсатный и питательный насосы; ПВД и ПНД - подогреватели высокого и низкого давления; Д - деаэратор; ПБ -бак питательной воды; СП - сетевой подогреватель; СН - сетевой насос.

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928 ). С 30-х гг. началось проектирование и стр-во ТЭЦ мощностью 100-200 Мет. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла -108 Гдж, а протяжённость тепловых сетей - 650 км. В сер. 70-х гг. суммарная электрич. мощность ТЭЦ составляет ок. 60 Гвт (при общей мощности электростанций ~ 220 и тепловых электростанций ~ 180 Гвт). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. кет -ч, отпуск тепла - 4-109 Гдж; мощность отд. новых ТЭЦ - 1, 5-1, 6 Гвт при часовом отпуске тепла до (1, 6-2, 0 ) Х X 104 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла - 150-160 к е т -ч. Удельный расход условного топлива на произ-во 1 кет-ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС - 370 г ); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт -ч (на лучших ГРЭС - ок. 300 г/квт -ч). Такой

пониженный (по сравнению с ГРЭС ) удельный расход топлива объясняется комбинированным произ-вом энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (~ 11% всего топлива, идущего на произ-во электроэнергии ).

ТЭЦ - осн. производств, звено в системе централизованного теплоснабжения. Стр-во ТЭЦ - одно из осн. направлений развития энергетич. х-ва в СССР и др. социалистич. странах. В капиталистич. странах ТЭЦ имеют ограниченное распространение (в основном пром. ТЭЦ ).

Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Р ы ж к и н В. Я., Тепловые электрические станции, М., 1976. В. Я. Рыжкин.

ТЕПЛОЭНЕРГЕТИКА, отрасль теплотехники, занимающаяся преобразованием теплоты в др. виды энергии, гл. обр. в механическую и электрическую. Для генерирования механич. энергии за счёт теплоты служат теплосиловые установки; полученная в этих установках механич. энергия используется для привода рабочих машин (металлообр. станков, автомобилей, конвейеров и т. д. ) или электромеханич. генераторов, с помощью к-рых вырабатывается электроэнергия. Установки, в к-рых преобразование теплоты в электроэнергию осуществляется без электромеханич. генераторов, наз. установками прямого преобразования энергии. К ним относят магнитол идродинамические генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи энергии.

Преобразование теплоты в механическую энергию в теплосиловых установках основано на способности газо- или парообразного тела совершать механич. работу при изменении его объёма. При этом рабочее тело (газ или пар ) должно совершить замкнутую последовательность термодинамич. процессов (цикл). В результате такого цикла от одного или неск. источников теплоты отбирается определённое количество теплоты Q1 и одному или неск. источникам теплоты отдаётся количество теплоты Q2, меньшее, чем Qi; при этом разность (Q1 - Q2 превращается в механич. работу Aтеор. Отношение полученной работы к затраченной теплоте наз. термин, кпд этого цикла
[ris]






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.