Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Взаимодействия нейтронов 1 страница






H. участвуют во всех известных взаимодействиях элементарных частиц - сильном, электромагнитном, слабом и гравитационном.

Сильное взаимодействие нейтронов. H. и протон участвуют в сильных взаимодействиях как компоненты единого изо-топич. дублета нуклонов. Изотопич. инвариантность сильных взаимодействий приводит к определённой связи между характеристиками различных процессов с участием H. и протона, напр, эффективные сечения рассеяния [ris] +-мезона на протоне и [ris] --мезона на H. равны, т. к. системы [ris] +р и [ris] -n имеют одинаковый изотопич. спин I=3/2 и отличаются лишь значениями проекции изотопич. спина I3 (I3 = + 3/2 в первом и I3 = -3/2 во втором случаях), одинаковы сечения рассеяния K+ на протоне и К° на H. и т. п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов на ускорителях высокой энергии. [Ввиду отсутствия мишеней, состоящих из H., данные о взаимодействии с H. различных нестабильных частиц извлекаются гл. обр. из экспериментов по рассеянию этих частиц на дейтроне (d) - простейшем ядре, содержащем H.]

При низких энергиях реальные взаимодействия H. и протонов с заряженными частицами и атомными ядрами сильно различаются из-за наличия у протона электрич. заряда, обусловливающего существование дальнодействующих куло-новских сил между протоном и др. заряженными частицами на таких расстояниях, на к-рых короткодействующие ядерные силы практически отсутствуют. Если энергия столкновения протона с протоном или атомным ядром ниже высоты кулоновского барьера (к-рая для тяжёлых ядер порядка 15 Мэв), рассеяние протона происходит в основном за счёт сил электростатич. отталкивания, не позволяющих частицам сблизиться до расстояний порядка радиуса действия ядерных сил. Отсутствие у H. электрич. заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к атомным ядрам. Именно это обусловливает уникальную способность H. сравнительно малых энергий вызывать различные ядерные реакции, в т. ч. реакцию деления тяжёлых ядер. О методах и результатах исследований взаимодействия H. с ядрами см. в статьях Медленные нейтроны, Нейтронная спектроскопия, Ядра атомного деление.

Рассеяние медленных H. на протонах при энергиях вплоть до 15 Мэв сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется взаимодействием n - p в состоянии относительного движения с орбитальным моментом количества движения l =O (т. н. S-волна). Рассеяние в S-состоянии является специфически квантовомеханич. явлением, не имеющим аналога в классич. механике. Оно превалирует над рассеянием в др. состояниях, когда де-бройлевская длина волны H. порядка или больше радиуса действия ядерных сил (h - постоянная Планка, [ris] - скорость H.). Поскольку при энергии 10 Мэв длина волны H. X = 2· 10-13 см, эта особенность рассеяния H. на протонах при таких энергиях непосредственно даёт сведения о порядке величины радиуса действия ядерных сил. Теоретич. рассмотрение показывает, что рассеяние в S-состоянии слабо зависит от детальной формы потенциала взаимодействия и с хорошей точностью описывается двумя параметрами- эффективным радиусом потенциала r и т. н. длиной рассеяния а. Фактически для описания рассеяния n - p число параметров вдвое больше, т. к. система пр может находиться в двух состояниях, обладающих различными значениями полного спина J = 1 (триплетное состояние) и J=O (синглетное состояние). Опыт показывает, что длины рассеяния H. протоном и эффективные радиусы взаимодействия в синглетном и триплет-ном состояниях различны, т. е. ядерные силы зависят от суммарного спина частиц. Из экспериментов следует также, что связанное состояние системы np (ядро дейтерия) может существовать лишь при суммарном спине 1, в то время как в синглетном состоянии величина ядерных сил недостаточна для образования связанного состояния H.- протон. Длина ядерного рассеяния в синглетном состоянии, определённая из опытов по рассеянию протонов на протонах (два протона в S-состоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине рассеяния n - p в синглетном состоянии. Это согласуется с изотопич. инвариантностью сильных взаимодействий. Отсутствие связанной системы пр в синглетном состоянии и изотопич. инвариантность ядерных сил приводят к выводу, что не может существовать связанной системы двух H.- т. н. би-нейтрон (аналогично протонам, два H. в S-состоянии должны иметь суммарный спин, равный нулю). Прямых опытов по рассеянию n - n не проводилось ввиду отсутствия нейтронных мишеней, однако косвенные данные (свойства ядер) и более непосредственные - изучение реакций 3H +3Н-> 4Не + 2n, [ris] - + d-> 2n + [ris] -согласуются с гипотезой изотопич. инвариантности ядерных сил и отсутствием бинейтрона. [Если бы существовал биней-трон, то в этих реакциях наблюдались бы при вполне определённых значениях энергии пики в энергетич. распределениях соответственно [ris] -частиц (ядер4Не) и [ris] -квантов.] Хотя ядерное взаимодействие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связанной системы, состоящей из большого числа одних только H.- нейтронных ядер. Этот вопрос требует дальнейшего теоретического и экспериментального изучения. Попытки обнаружить на опыте ядра из трёх-четырёх H., а также ядра 4H, 5H, 6H не дали пока положит, результата.

Несмотря на отсутствие последовательной теории сильных взаимодействий, на основе ряда существующих представлений можно качественно понять нек-рые закономерности сильных взаимодействий и структуры H. Согласно этим представлениям, сильное взаимодействие между H. и др. адронами (напр., протоном) осуществляется путём обмена виртуальными адронами (см. Виртуальные частицы) - л-мезонами, р-мезонами и др. Такая картина взаимодействия объясняет короткодействующий характер ядерных сил, радиус к-рых определяется комптоновской длиной волны самого лёгкого адрона - [ris] -мезона (равной 1, 4· 10-13 см). Вместе с тем она указывает на возможность виртуального превращения H. в др. адроны, напр, процесс испускания и поглощения [ris] -мезона: n-> p+ [ris] --> n. Известная из опыта интенсивность сильных взаимодействий такова, что H. подавляющее время должен проводить в подобного рода " диссоциированных" состояниях, находясь как бы в " облаке" виртуальных я-мезонов и др. адронов. Это приводит к пространств, распределению электрич. заряда и магнитного момента внутри H., физич. размеры к-рого определяются размерами " облака" виртуальных частиц (см. также Формфактор). В частности, оказывается возможным качественно интерпретировать отмеченное выше приблизительное равенство по абс. величине аномальных магнитных моментов H. и протона, если считать, что магнитный момент H. создаётся орбитальным движением заряженных [ris] --мезонов, испускаемых виртуально в процессе n-> p + [ris] --> n, а аномальный магнитный момент протона - орбитальным движением виртуального облака [ris] +-мезонов, создаваемого процессом p -> n + [ris] + -> р.

Электромагнитные взаимодействия нейтрона. Электромагнитные свойства H. определяются наличием у него магнитного момента, а также существующим внутри H. распределением положит, и отри-цат. зарядов и токов. Все эти характеристики, как следует из предыдущего, связаны с участием H. в сильном взаимодействии, обусловливающем его структуру. Магнитный момент H. определяет поведение H. во внешних электромагнитных полях: расщепление пучка H. в неоднородном магнитном поле, прецессию спина H. Внутр. электромагнитная структура H. проявляется при рассеянии электронов высокой энергии на H. и в процессах рождения мезонов на H. [ris] -квантами (фоторождение мезонов). Электромагнитные взаимодействия H. с электронными оболочками атомов и атомными ядрами приводят к ряду явлений, имеющих важное значение для исследования строения вещества.

Взаимодействие магнитного момента H. с магнитными моментами электронных оболочек атомов проявляется существенно для H., длина волны к-рых порядка или больше атомных размеров (энергия Е< 10эв), и широко используется для исследования магнитной структуры и элементарных возбуждений (спиновых волн) магнитоупорядоченных кристаллов (см. Нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных H. (см. Поляризованные нейтроны).

Взаимодействие магнитного момента H. с электрич. полем ядра вызывает специфич. рассеяние H., указанное впервые амер. физиком Ю. Швингером и потому называемое " швингеровскимк Полное сечение этого рассеяния невелико, однако при малых углах (~3°) оно становится сравнимым с сечением ядерного рассеяния; H., рассеянные на такие углы, в сильной степени поляризованы взаимодействие H.- электрон (n-е), несвязанное с собств. или орбитальным моментом электрона, сводится в основном к взаимодействию магнитного момента H. с электрич. полем электрона. Другой, по-видимому меньший, вклад в (n-е)-взаимодействие может быть обусловлен распределением электрич. зарядов и токов внутри H. Хотя (n-е)-взаимодействие очень мало, его удалось наблюдать в неск. экспериментах.

Слабое взаимодействие нейтрона проявляется в таких процессах, как распад H.: n -> p + e- + v e, захват электронного антинейтрино протоном: v e + p -> n + е+ и мюонного нейтрино ([ris][ris]) нейтроном: v[ris] + n -> p + [ris] -, ядерный захват мюонов: [ris] -+ p -> n+ v[ris], распады странных частиц, напр. [ris] -> [ris] ° + n, и т. д.

Гравитационное взаимодействие нейтрона. H.- единственная из имеющих массу покоя элементарных частиц, для к-рой непосредственно наблюдалось гравитац. взаимодействие - искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных H. Измеренное гравитац. ускорение H. в пределах точности эксперимента совпадает с гравитац. ускорением макроскопич. тел.

Нейтроны во Вселенной и околоземном пространстве
Вопрос о количестве H. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной (см. Космология), значительная часть первоначально существовавших свободных H. при расширении успевает распасться. Часть H., к-рая оказывается захваченной протонами, должна в конечном счёте привести приблизительно к 30%-ному содержанию ядер Не и 70%-ному - протонов. Экспериментальное определение процентного состава Не во Вселенной - одна из кри-тич. проверок модели горячей Вселенной.

Эволюция звёзд в ряде случаев приводит к образованию нейтронных звезд, к числу к-рых относятся, в частности, т. н. пульсары.

В первичной компоненте космических лучей H. в силу своей нестабильности отсутствуют. Однако взаимодействия частиц космич. лучей с ядрами атомов земной атмосферы приводят к генерации H. в атмосфере. Реакция 14N(n, p) 14C, вызываемая этими H., - осн. источник радиоактивного изотопа углерода 14C в атмосфере, откуда он поступает в живые организмы; на определении содержания 14C в органич. остатках основан радиоуглеродный метод геохронологии. Распад медленных H., диффундирующих из атмосферы в околоземное космич. пространство, является одним из осн. источников электронов, заполняющих внутр. область радиационного пояса Земли.

Лит.: Власов H. А., Нейтроны, 2 изд., M., 1971; Г у р е в и ч И. И., T ар а с о в Л. В., Физика нейтронов низких энергий, M, 1965.

Ф. Л. Шапиро, В. И. Лущиков.

НЕЙТРОННАЯ ОПТИКА, раздел нейтронной физики, изучающий ряд явлений, имеющих оптич. аналогии и возникающих при взаимодействии нейтронных пучков с веществом или полями (магнитным, гравитационными). Эти явления характерны для медленных нейтронов. К ним следует отнести: преломление и отражение нейтронных пучков на границе двух сред, полное отражение нейтронного пучка от границы раздела (наблюдаемое при определённых условиях), дифракцию нейтронов на отд. неоднородностях среды (рассеяние нейтронов на малые углы) и на периодич. структурах (см. Дифракция частиц). Для нек-рых веществ при отражении и преломлении возникает поляризация нейтронов, с к-рой (в первом приближении) можно сопоставить круговую поляризацию света. Неупругое рассеяние нейтронов в газах, жидкостях и твёрдых телах имеет аналогию с комбинационным рассеянием света.

В ряде явлений H. о. преобладающее значение имеют волновые свойства нейтронов. Длина волны [ris] нейтронов определяется массой нейтронов m = 1, 67 10-24 г и их скоростью v: [ris] = h/mv, (1) где h - Планка постоянная (см. Волны де Бройля). Средняя скорость тепловых нейтронов v = 2, 2·105 см/сек, для них - длина волны [ris] = 1, 8·10-8 см, т. е. того же порядка, что и для рентгеновских лучей. Длины волн самых медленных нейтронов (ультрахолодных, см. ниже) такие же, как у ультрафиолетового и видимого света. Аналогию между пучками нейтронов и электромагнитными волнами подчёркивает и тот факт, что нейтроны так же, как и фотоны, не имеют электрич. заряда. Вместе с тем природа нейтронных и электромагнитных волн различна. Фотоны взаимодействуют с электронной оболочкой атома, тогда как нейтроны - в основном с атомными ядрами. Нейтрон обладает массой покоя, что позволяет применять для нейтронных исследований методы, не свойственные оптике. Наличие у нейтрона магнитного момента обусловливает магнитное взаимодействие нейтронов с магнитными материалами и магнитными полями, отсутствующее для фотонов.

Развитие H. о. началось в 40-х гг. (после появления ядерных реакторов). Э. Ферми ввёл для описания взаимодействия нейтронов с конденсированными средами понятие показателя преломления п. При прохождении нейтронов через среду происходит их рассеяние атомными ядрами. На языке волн это означает, что падающая нейтронная волна порождает вторичные волны, когерентное сложение которых определяет преломлённые и отражённые волны. В результате взаимодействия нейтронов с ядрами изменяется скорость, а следовательно длина волны [ris] 1 нейтронов в среде по сравнению с длиной волны [ris] в вакууме. В обычных условиях, когда поглощением нейтронов на пути порядка [ris] 1 можно пренебречь (так же как в оптике): n = [ris] / [ris] 1. Из соотношения де Бройля следует, что n =[ris]/[ris]1 = v1/v.

Если U- средний по объёму среды потенциал взаимодействия нейтронов с ядрами, то при попадании в среду нейтрон должен совершить работу. Его начальная кинетич. энергия E = mv2/2 в среде уменьшается: E1 =E-U. При U> 0 скорость нейтронов в среде уменьшается v1 < v [ris]1 > [ris] и n< 1. При U< 0 скорость возрастает и п> 1. Если ввести для нейтронных волн величину, аналогичную диэлектрической проницаемости: [ris] = n2, то:

[ris] = [ris]2 / [ris]21 = [ris]21/[ris]2 = E1/E. Потенциал U = h2Nb/2[ris]m,

откуда: e = n2 = 1-h2Nb/[ris]m2v2. (2) Здесь b - когерентная длина рассеяния нейтронов ядрами, a N - число ядер в единице объёма среды. Для большинства веществ b> 0, и формуле (2) можно придать вид:
[ris]

Нейтроны со скоростью v< v0 имеют энергию E < U, для них n2 < О, т.е. показатель преломления мнимый. Такие нейт-троны не могут преодолеть силы отталкивания среды и полностью отражаются от её поверхности. Они получили назв. ультрахолодных нейтронов. Для металлов v0~м/сек (напр., для Cu v0=5, 7 м/сек).

Скорость тепловых нейтронов в неск. сот раз больше, чем ультрахолодных, и п близко к 1 (1-n=10-5). При скользящем падении на поверхность плотного вещества пучок тепловых нейтронов также испытывает полное отражение, аналогичное полному внутреннему отражению света. Это имеет место при углах скольжения [ris] < = [ris] Кp, т. е. при углах падения

[ris] > = [ris][ris] p = ([ris] /2)- [ris] Кp. Критич. угол определяется из условия:
[ris]

Напр., для меди [ris] кр = 9, 5'. Можно показать, что условие полного отражения (4) эквивалентно требованию: vz< =v0, где vz- компонента скорости нейтрона, нормальная к отражающей поверхности. Скорость холодных нейтронов в неск. раз меньше, чем тепловых, а угол [ris] кр-соответственно больше.

Полное отражение используется для транспортировки тепловых и холодных нейтронов с миним. потерями от ядерного реактора к экспериментальным установкам (расстояния ~ 100 м). Это осуществляется с помощью зеркальных неитроноводов - вакуумированных труб, внутр. поверхность к-рых отражает нейтроны. Зеркальные нейтроноводы делают из меди или стекла (с напыленным металлом или без него).

В действительности коэфф. отражения нейтронов всегда немного меньше единицы. Это связано с тем, что ядра не только рассеивают нейтроны, но и поглощают их. Учёт поглощения приводит к уточнению формулы (3):
[ris]

Здесь [ris] - эффективное поперечное сечение всех процессов, приводящих к ослаблению нейтронного пучка. Для холодных и ультрахолодных нейтронов существенна сумма сечений захвата и неупругого рассеяния, величина к-рых обратно пропорциональна скорости v. Поэтому произведение [ris][ris] не зависит от [ris]. Это означает, что [ris] и n для нейтронов, как и в оптике, комплексные величины: [ris] = [ris]' +iе"; п = п' + in". Для ультрахолодных нейтронов действительная часть [ris], т. е. [ris] ' < 0 и п" > п'. В случае света это характерно для металлов, и отражение ультрахолодных нейтронов от многих веществ аналогично отражению света от металлов с чрезвычайно высокой отражательной способностью (см. Металлооптика). Если b < 0, то в формуле (5) перед членом v20 / [ris]2 стоит знак + и [ris] > 1 (возрастает с уменьшением [ris]). Такие вещества отражают и преломляют очень медленные нейтроны, как диэлектрики свет.

Формулу (2) легко обобщить на случай присутствия в среде магнитного поля, добавив к энергии U взаимодействия нейтронов со средой энергию магнитного взаимодействия ± [ris]В, где [ris] - магнитный момент нейтрона, В - магнитная индукция (знаки ± относятся к двум возможным ориентациям магнитного момента нейтрона относительно вектора В, т. е. к двум поляризациям нейтронного пучка): n2 = 1-h2Nb/[ris]m2v2±2[ris]B/mv2. (6)

Выбором материала для отражающего зеркала, магнитного поля и угла скольжения можно добиться того, чтобы нейтроны одной из двух поляризаций испытывали полное отражение, а другой - нет. Подобное устройство используется для получения пучков поляризованных нейтронов и для определения степени их поляризации.

На принципах H. о. основан ряд устройств, используемых как в экспериментальной технике, так и для решения практич. задач: нейтронные зеркала, прямые и изогнутые нейтроноводы полного внутр. отражения, нейтронные кристаллич. монохроматоры, зеркальные и кристаллич. поляризаторы и анализаторы нейтронов, устройства, позволяющие фокусировать нейтронные пучки, преломляющие призмы, нейтронный интерферометр и т. д. Дифракция нейтронов широко применяется для исследования субмикроскопич. свойств вещества: атомно-кристаллич. структуры, колебаний кристаллической решётки, магнитной структуры и её динамики (см. Нейтронография).

Лит.: Ферми Э., Лекции по атомной физике, пер. с англ., M., 1952; Ю з Д., Нейтронная оптика, пер. с англ., M., 1955; Г у р е в и ч И. И., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Франк И. M., Некоторые новые аспекты нейтронной оптики, " Природа", 1972, № 9. См. также лит. при ст. Нейтронография. Ю. M. Останевич, И. M. Франк.

НЕЙТРОННАЯ РАДИОГРАФИЯ, получение изображения образца в результате воздействия на фоточувствит. слой вторичных излучений, возникающих в образце при облучении его нейтронами. H. р. применяется гл. обр. для исследования металлов, сплавов, минералов с целью выявления наличия и размещения в них различных примесей (см. Дефектоскопия). В результате захвата нейтрона ядра становятся радиоактивными (см. Нейтронная спектроскопия, Медленные нейтроны). Метод H. р. основан на разной вероятности захвата нейтронов различными атомными ядрами. Если облучённый нейтронами образец (обычно тонкая пластинка) совместить с фотоплёнкой, то на проявленном снимке получаются участки с различной степенью почернения (нейтронная фотография). Более тёмные участки соответствуют ядрам, которые сильнее поглощают нейтроны. Наличие и размещение нек-рых примесей в образце можно определять не только по вторичным излучениям, но также по ослаблению первичного нейтронного потока в результате поглощения нейтронов ядрами примесей. Между образцом и фотослоем помещают фольгу из элемента, который становится под действием нейтронов [ris] -активным (Ag, Dy, In). В этом случае более светлые пятна соответствуют более сильному поглощению нейтронов. Лит.: Радиография. Сб. статей, M., 1952. Л. В. Тарасов.

НЕЙТРОННАЯ СПЕКТРОСКОПИЯ, нейтронная спектрометрия, область ядерной физики, охватывающая исследования зависимости эффективного поперечного сечения взаимодействия нейтронов с атомными ядрами от энергии нейтронов.

Характерной особенностью энергетической зависимости сечений [ris] взаимодействия медленных нейтронов с ядрами является наличие так называемых нейтронных резонансов - резкого увеличения (в 10-105 раз) поглощения и рассеяния нейтронов вблизи определённых энергий (рис. 1). Избирательное (резонансное) поглощение нейтронов определённых энергий впервые было обнаружено Э. Ферми с сотрудниками в 1934. Ими же было показано, что способность поглощать медленные нейтроны сильно меняется от ядра к ядру.

Образующееся после захвата нейтрона высоковозбуждённое (резонансное) состояние ядра нестабильно (время жизни ~ 10-15 сек); ядро распадается с испусканием нейтрона (резонансное рассеяние нейтронов) или [ris] -кванта (радиационный захват). Значительно реже испускаются [ris] -частица или протон. Для нек-рых очень тяжёлых ядер (U, Pu и др.) происходит также деление возбуждённого ядра на 2, реже на 3 осколка (см. Ядра атомного деление).

Вероятности различных видов распада резонансного состояния ядра характеризуются т. н. ширинами резонансов (нейтронной Гд, радиационной Г [ris], делительной Гg, [ris] -шириной Г [ris] и т. д.). Эти ширины входят в качестве параметров в формулу Брейта - Вигнера, к-рая описывает зависимость эффективного сечения взаимодействия нейтрона с ядром от энергии нейтрона E вблизи резонансной энергии E0 Для каждого вида (i) распада формула Брейта - Вигнера приближённо может быть записана в виде:
[ris]

Здесь Г = Гn + Г [ris] + Г [ris] +... - полная ширина нейтронного резонанса, равная ширине резонансного пика на половине высоты, g - статистич. фактор, зависящий от спина и четности резонансного состояния ядра.

Эффективные сечения измеряются с помощью нейтронного спектрометра, осн. элементами к-рого являются источник И моноэнергетич. нейтронов с плавно изменяемой энергией и детектор Д нейтронов или вторичного излучения. Полное сечение Г определяется из отношения отсчётов нейтронного детектора Д с мишенью M, расположенной на пути пучка и вне пучка (рис. 2, а). При измерении парциальных сечений регистрируется вторичное излучение ([ris] -лучи, вторичные нейтроны, осколки деления и т. д.) из мишени, помещённой на пути нейтронов. В области энергии =10 эв в качестве нейтронного источника иногда используются кристаллич. нейтронные монохроматоры, к-рые устанавливаются на канале ядерного реактора и выделяют пучки нейтронов с определённой энергией (рис. 2, 6). Поворачивая кристалл, изменяют энергию нейтронов (см. Дифракция частиц). Для энергии > =30 кэв обычно используют ускорители Ван-де-Граафа (см. Электростатический ускоритель),

Рис. 2. Схемы нейтронных спектрометров; а - с моноэ нергетическим источником И, б - с кристаллическим монохроматором на канале ядерного реактора; Д - нейтронный детектор; M - поглощающая пли рассеивающая мишень; К - коллиматор.

в к-рых моноэнергетич. нейтроны образуются в результате ядерных реакций типа 7Li(p, n)7Ве. При изменении энергии протонов изменяется энергия вылетающих нейтронов (энергетич. разброс [ris]E ~ 1 кэв).

Более распространённым методом в H. с. является метод времени пролёта, в к-ром используются нейтронные источники с широким энергетич. спектром, испускающие нейтроны в виде коротких вспышек длительностью т. Спец. электронное устройство, наз. временным анализатором, фиксирует интервал времени t между нейтронной вспышкой и моментом попадания нейтрона в детектор, т. е. время пролёта нейтронами расстояния L. от источника до детектора. Энергия нейтронов E в эв связана со временем t в мксек соотношением: E = (72, 3L)2/t2 (2) При измерении парциальных сечений методом времени пролёта детектор располагают непосредственно ок. мишени.

Рис. 1. Зависимость суммарного эффективного сечения [ris] поглощения и рассеяния нейтронов от их энергии S ·

T.к. вторичная частица испускается практически одновременно с захватом нейтрона, то фиксируется момент захвата нейтрона ядром, а следовательно, определяется энергия нейтрона по времени t пролета. Энергетич разрешение [ris]E нейтронного спектрометра по времени пролета приближенно можно представить в виде.

[ris] E/E = 2 [ris] /t (3)

Импульсными источниками нейтронов обычно служат ускорители заряженных частиц или стационарные ядерные реакторы с механич прерывателями, периодически пропускающими нейтроны в течение времени t ~ 1 мксек. Один из лучших нейтронных спектрометров по времени пролета создан в OK Ридже (США). Он содержит линейный ускоритель электронов с энергией 140 Мэв. Электроны за счет тормозного [ris] -излучения выбивают из мишени 1011 нейтронов за время эчектронного импульса ([ris] = 10-8 сек) при частоте повторения импульсов до 1000 в 1 сек Разрешение [ris]E такого спектрометра при L = 100 м и E = 100 эв составляет 3 10 3 эв B H. c часто используются детекторы, вырабатывающие сигнал величина к-рого пропорциональна энергии регистрируемой частицы (см Полупроводниковый детектор, Пропорциональный счетчик, Сцинтилляционный счетчик) Это позволяет измерить энергетич спектр вторичных частиц, вылетающих из мишени, что значительно расширяет объем информации о возбужденных состояниях ядер и механизмах различных ядерных переходов и т. д.
Анализ экспериментальных данных позволяет определять такие характеристики резонанса, как энергия E 0, полная Г и парциальные ширины, спин и четность резонансных состояний ядер. Для большинства стабильных ядер эти характеристики известны (по крайней мере E и Гn) для десятков а иногда и сотен резонансов. При более высоких энергиях нейтронов разрешающая способность нейтронных спектрометров становится недостаточной для выделения отд. резонансов. В этом случае исследуются усредненные полные и парциальные сечения, к рые дают сведения о средних характеристиках резонансов.

Величины энергетич интервалов D между соседними резонансами ядра флуктуируют. Среднее значение < D> может сильно меняться при переходе от ядра к ядру. Общей закономерностью являет ся уменьшение < D> с увеличением массового числа А (от 104 эв для А = 30 до 1 эв для U и более тяжелых ядер). При переходе от ядер с нечетным Л к со седним четным происходит скачкообразное увеличение < D >, что связано с изменением энергии связи захватываемого нейтрона. Нейтронные ширины резонансов Гn также флуктуируют от резонанса к резонансу для данного ядра. Кроме того, Гn растут в среднем пропорцио нально E0 1/2, поэтому обычно пользуются приведенными нейтронными ширинами Г°n= Гn/E1/2 Средние значения нейтронных ширин < Гn> коррелируют с величинами < D>. Каждая из них для разных ядер может отличаться в 103-104 раз, но их отношение S0 = < Гn/ E > / < D >, наз. силовой функцией, слабо и плавно изменяется от ядра к ядру Зависимость So от Л хорошо объясняется с помощью оптич. модели ядра (см Ядерные модели).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.