Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Естественные источники нейтрино






Естественная радиоактивность. Любое космич. тело, в т. ч. Земля, содержит значит, количество радиоактивных элементов и является источником H. Регистрация антинейтрино от Земли в принципе возможна, однако методы регистрации ещё не разработаны.

Столкновение протонов космических лучей с газом и реликтовыми фотонами может приводить к рождению заряженных я-мезонов, распад к-рых сопровождается испусканием H. (или антинейтрино). В этом механизме возможна генерация H. с энергиями вплоть до Ev = 1020 эв. Источником таких H. является атмосфера Земли, а также ядро и диск Галактики, где сосредоточена основная масса межзвёздного газа. H. от столкновения протонов сверхвысоких энергий с реликтовыми фотонами испускаются во всём мировом пространстве. Существует гипотеза, что H. сверхвысоких энергий являются причиной сверхмощных широких атмосферных ливней (см. Космические лучи).

Атмосфера Земли- пока единственный естеств. источник, от к-рого удалось зарегистрировать H. Рождаются H. в верхних слоях атмосферы, где генерируется наибольшее число [ris] -и К-мезонов. Впервые идея экспериментов с H. космич. лучей была высказана M. А. Марковым (1960). Было предложено регистрировать глубоко под землёй мюоны с энергией 10-100 Гэв от реакции [ris][ris] + n -> p + [ris] -(**). Регистрируя мюоны из нижней полусферы Земли и под большими зенитными углами, можно избавиться от фона атмосферных мюонов и иметь чистые нейтринные события (**). Первые результаты получены в Индии и в Юж. Африке в 1965 с помощью спец. нейтринных телескопов (рис. 4). К 1973 мировая статистика насчитывала свыше сотни нейтринных событий.

Реакции термоядерного синтеза хим. элементов - осн. механизм генерации H. в недрах Солнца и большей части звёзд (в период их " ядерной" эволюции).

Сверхгорячая плазма служит источником H. в звёздах на завершающих этапах эволюции, а также в модели горячей Вселенной в первые доли секунды её возникновения. Возможны два вида ге-нерййии H. Первый связан с реакциями взаимного превращения нуклонов p < => n ([ris]. н. урка-процесс) и может идти как на связанных нуклонах ядер при темп-pax Т~ 109 К, так и на свободных нуклонах при T> =1010К. Второй способ, чисто лепгонный, связан с реакциями типа [ris] --> е-+ [ris]e + [ris][ris], а также с реакциями [ris] + e -> e+ [ris]e + [ris]e (фоторождение H.), е+ + е- -> [ris]e + [ris]e (нейтринная аннигиляция электрон-позитронных пар) и др., к-рые происходят, если существует гипотетич. рассеяние [ris]e + е -> [ris]e + е (предсказываемое теорией Ферми). Пока не удалось доказать существование [ris]e + е -> [ris]e + е-рассеяния лабораторными методами (на H. от реакторов и ускорителей); считается, что астрофизич. данные свидетельствуют в пользу существования такого процесса.

Реликтовые H. Согласно модели горячей Вселенной, H., испущенные в момент её возникновения, испытывают сильное красное смещение при космоло-гич. расширении Вселенной. Такие реликтовые H. заполняют всё мировое про-

Рис. 4. [ris] - схема нейтринного телескопа, установленного в шахте Южной Индии на глубине около 2300 м: 1 - пластические сцинтилляцнонные элементы, площадью 1 м2, каждый из которых просматривается двумя фотоумножителями 2; регистрируются четырёхкратные совпадения между парой фотоумножителей на одной стороне и любой парой - на другой; между сцинтилляторами установлено неск. слоев неоновых трубок 3 для фотографирования следов заряженных частиц, образованных нейтрино; 4 - свинцовые поглотители толщиной 2, 5 см', 6 - случай неупругого взаимодействия нейтрино, пришедшего из нижней полусферы Земли: 5, 6 - следы, оставленные, повидимому, мюоном и пи-мезоном, которые образовались внутри скалы при столкновении [ris][ris] с нуклоном.

странство. В наиболее реалистич. варианте модели горячей Вселенной число мюон-ных и электронных H. и антинейтрино одинаково и составляет ~ 200 частиц/см2, а ср. энергия H.-(2-3)-10-4эв, что соответствует температуре нейтринного газа 2-3 К. Для понимания механизма развития Вселенной очень важно экспериментально установить наличие реликтовых H. и измерить температуру нейтринного газа.

В рамках модели горячей Вселенной удаётся получить наилучшую оценку для массы мюонного H. Согласно космо-логич. данным, плотность материи в расширяющейся Вселенной не может превышать 10-28 г/см3; отсюда следует, что максимально возможная масса мюонного H. составляет ~ 300 эв (т. е. значительно ниже верхнего предела, установленного лабораторными методами).

Нейтронизация вещества, т. е. превращение протонов в нейтроны по схеме p + е- -> n + [ris]e, может служить мощным источником H., когда звезда по к.-л. причинам теряет гравитац. устойчивость и коллапсирует, превращаясь в нейтронную звезду. При этом огромное число H., равное по порядку величины числу протонов в звезде (~1057), испускается за сотые доли сек. Если коллапсирует горячая звезда, нейтронизация происходит совместно с процессами, характерными для горячей плазмы. Такая ситуация возможна при взрывах сверхновых и при коллапсе гравитационном.

О возможности регистрации H. от Солнца и др. звёзд см. Нейтринная астрономия.

Развитие науки о H. за последние четверть века убедительно доказало, что H. из гшютетич. частицы превратилось в мощный инструмент исследования микро- и макромира.

Лит.: А л л е н Д ж, Нейтрино, пер. с англ., M., 1960; Алиханов А. И., Слабые взаимодействия. Новейшие исследования [ris] -распада, M., 1960; Теоретическая физика 20 века, M., 1962; Окунь Л. Б., Слабое взаимодействие элементарных частиц, M., 1963; Понтекорво Б. M., Нейтрино и его роль в астрофизике, " Успехи физических наук", 1963, т. 79, в. 1, с. 3; Марков M. А., Нейтрино, M., 1964; Железных И. M., Подземные нейтринные эксперименты, " Успехи физических наук". 1966, т. 89, в. 3, с. 513; Ли Ц. и By Ц., Слабые взаимодействия, пер. с англ., M., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, M., 1970; Березинский В. С., Нейтрино, M., 1973. Г. T. Зацепин, Ю. С. Копысов.

НЕЙТРОН (англ, neutron, от лат. neuter - ни тот, ни другой; символ n), нейтральная (не обладающая электрич. зарядом) элементарная частица со спином 1/2(в единицах постоянной Планка h) и массой, незначительно превышающей массу протона. Из протонов и H. построены все ядра атомные. Магнитный момент H. равен примерно двум ядерным магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. H. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутр. характеристикой - барионным зарядом, равным, как и у протона (р), + 1. H. были открыты в 1932 англ, физиком Дж. Чедвиком, к-рый установил, что обнаруженное нем. физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) [ris] -частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

H. устойчивы только в составе стабильных атомных ядер. Свободный H.-нестабильная частица, распадающаяся на протон, электрон (е-)и электронное антинейтрино ([ris]e): n-> p +e- + [ris] e; ср. время жизни H. [ris] ~ 16 мин. В веществе свободные H. существуют ещё меньше (в плотных веществах единицы - сотни мксек) вследствие их сильного поглощения ядрами. Поэтому свободные H. возникают в природе или получаются в лаборатории только в результате ядерных реакций (см. Нейтронные источники). В свою очередь, свободный H. способен взаимодействовать с атомными ядрами, вплоть до самых тяжёлых; исчезая, H. вызывает ту или иную ядерную реакцию, из к-рых особое значение имеет деление тяжёлых ядер, а также радиационный захват H., приводящий в ряде случаев к образованию радиоактивных изотопов. Большая эффективность H. в осуществлении ядерных реакций, своеобразие взаимодействия с веществом совсем медленных H. (резонансные эффекты, ди-фракц. рассеяние в кристаллах и т. п.) делают H. исключительно важным орудием исследования в ядерной физике и физике твёрдого тела. В практич. приложениях H. играют ключевую роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов (искусств, радиоактивность), а также широко используются в хим. анализе (активационный анализ) и в геологич. разведке (нейтронный каротаж).

В зависимости от энергии H. принята их условная классификация: ультрахолодные H. (до 10-7 эв), очень холодные (10-7- 10-4эв), холодные (10-4-5· 10-3 эв), тепловые (5·10-3-0, 5 эв), резонансные (0, 5-104 эв), промежуточные (104 - 105 эв), быстрые (105-108 эв), высокоэнергичные (108- 1010 эв) и релятивистские (> = 1010 эв); все H. с энергией до 105 эв объединяют общим названием медленные нейтроны.

О методах регистрации H. см. Нейтронные детекторы.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.