Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Мельницы






 

На обогатительных фабриках применяются ша­ровые и рудно-галечные мельницы с разгрузочной решеткой, шаровые мельницы с центральной разгрузкой, стержневые мельницы с централь­ной разгрузкой, рудные мельницы для мокрого самоизмельчения типа «Каскад» и рудные мельницы для сухого самоизмельчения типа «Аэрофол». Мельницы характеризуются внутренним диаметром D барабана и его рабочей длиной L.

Барабанная мельница (рис. 3. 12, а) представляет собой обычно цилиндрический (иногда конический или цилиндроконический) барабан 1 с торцевыми крышками 2, 3 и пустотелы­ми цапфами 4, 5, опирающимися на подшипники б, 7. Исходный материал загружается через одну цапфу, а измельченный про­дукт разгружается через другую. Движение материала вдоль оси барабана происходит за счет перепада уровней загрузки и разгрузки и напора в результате непрерывной загрузки ис­ходного материала: при мокром измельчении материал тран­спортируется водой, а при сухом - воздушным потоком.

При вращении барабана измельчающая среда (стальные шары, стержни, куски руды или рудная галя) и измельчаемая руда благодаря трению поднимаются на некоторую высоту и затем сползают, скатываются или падают вниз. Измельчение происходит за счет удара падающей измельчающей среды, раздавливания и трения между частицами и перекатывающи­мися слоями содержимого мельницы. Вклад удара, трения и раздавливания в работу измельчения зависит от режима ра­боты мельницы, определяемого частотой вращения ее бара­бана, по отношению к критической n кр, когда для частицы или дробящего тела, например шара, в наивысшей точке А (рис. 4.12, б) достигается равновесие двух основных действую­щих сил — центробежной силы F и силы тяжести Р — и они уже не могут оторваться от поверхности вращающегося барабана.

 

 

Рис. 4.12. Схема барабанной вращающейся мельницы (а) и движения в ней мелющих тел при каскадном (б), водопадном (в) и смешанном (г) режимах измельчения

 

Для этих условий:

 

мин-1

где D — внутренний диаметр барабана мельницы.

В промышленных условиях мельницы работают при час­тоте вращения барабана, равной 50 — 88 % критической, в кас­кадном, водопадном или смешанных режимах измельчения в зависимости от характера измельчаемого сырья, его исходной и необходимой конечной крупности.

Каскадный (перекатный) режим (рис. 4.12, б) наблюдается при небольшой частоте вращения бара­бана, составляющей 50 — 60 % критической. Мелющие тела, например шары, поднимаясь на некоторую высоту, затем ска­тываются «каскадом» или сползают вниз, измельчая материал главным образом раздавливанием и истиранием. Режим используется с целью: получения однородного по крупности продукта измельчения перед его, например, гравитационным обо­гащением; предотвращения ударных воздействий мелющих тел на материал и тем самым переизмельчения хрупких мате­риалов или некрепких пород; разупрочнения сростков и улуч­шения степени их раскрытия при доизмельчении концентра­тов и промпродуктов обогащения. Разупрочнение сростков обусловлено множеством относительно слабых ударов, произ­водимых мелющими телами при их каскадном перемещении относительно друг друга. Уменьшение диаметра шаров до 25-40 мм, но увеличение их количества, приводящее к уменьшению энергии ударов, но к увеличению их числа, повышает эффек­тивность разупрочнения и раскрытия сростков при уменьше­нии энергозатрат на 25-30 % без снижения удельной произ­водительности мельницы по готовому классу крупности. По­ложительным явлением при каскадном режиме измельчения является также внутримельничная классификация, благодаря которой в нижней части барабана концентрируются и подвер­гаются измельчению лишь наиболее крупные и тяжелые сро­стки; более тонкие частицы, находясь в пульпе выше зоны, заполненной мелющими телами, не измельчаются и выносят­ся из мельницы потоком. Для обеспечения этой классифика­ции измельчение проводится на относительно разбавленных пульпах (44 - 50% твердого), что необходимо также и для обе­спечения достаточной интенсивности измельчения при пере­катывании мелющих тел, так как слишком густая пульпа чрез­мерно смягчала бы их воздействие на измельчаемые зерна.

Водопадный (катарактный) режим (рис. 4.12, в) осуществ­ляется при частоте вращения барабана 75-88 % критической, обеспечивающей переход всех или большинства слоев мелю­щих тел с круговой на параболическую траекторию. Измель­чение материала при этом происходит главным образом за счет удара падающих тел и лишь незначительно за счет раз­давливания и истирания. Эффективность измельчения возрас­тает с увеличением плотности пульпы до 65-80 % твердого за счет уменьшения гасящего действия жидкой фазы на силу удара мелющего тела. Однако слишком большая плотность пульпы приводит к переизмельчению материала и может стать причиной забивки мельницы. Водопадный режим является наиболее оптимальным при измельчении крупнодробле­ных и трудноизмельчаемых материалов и широко использу­ется в настоящее время в промышленной практике.

Смешанный режим (рис. 4.12, г) является промежуточным между каскадным и водопадным режимами измельчения и наблюдается при частоте вращения барабана 60-75 % кри­тической. При этом внешние слои мелющих тел падают на внутренние слои материала, скатывающегося по склону вниз.

Оптимальная частота вращения барабана при всех режи­мах измельчения зависит от степени или коэффициента на­полнения его мелющими телами, которые изменяются от 30 до 50%. Чем больше их значение, тем меньше оптимальная частота вращения барабана.

Технологическая и экономическая эффективность работы барабанных вращающихся мельниц зависит не только от ре­жима измельчения, плотности пульпы и степени заполнения барабана мелющими телами. Существенное влияние на нее оказывают также характеристика измельчающей среды, про­филь и качество футеровки барабана, исходная и конечная крупность измельчаемого материала, его измельчаемость, кон­структивные особенности мельницы.

В качестве измельчающей среды наиболее часто исполь­зуются стальные шары, стержни, куски руды или рудная галя. Максимальный размер мелющих тел, загружаемых в мельни­цу, в 13-33 раза больше максимального куска измельчаемого материала. Для измельчения крупных и твердых материалов применяются более крупные, а для измельчения мелких и мяг­ких материалов -более мелкие мелющие тела. К примеру, раз­мер загружаемых стальных шаров изменяется от 100-125 до 25-30 мм. С целью повышения эффективности воздействия мелющих тел на измельчение материала, раскрытие сростков и снижение энергозатрат:

• производят рационирование гранулометрического состава измельчающей среды догрузкой мелющих тел (например, шаров) разного размера с учетом гранулометрической характеристики измельчаемого материала;

• применяют барабаны цилиндроконической и конической формы, способствующие рациональному распределению мелющих тел и измельчаемого материала по их крупности вдоль барабана: там, где диаметр и окружная скорость бара­бана больше, т. е. в начале барабана, сосредотачиваются бо­лее крупные мелющие тела и куски руды; последующее уменьшение диаметра барабана в направлении движения ма­териала сопровождается уменьшением крупности материала и мелющих тел;

• используют стальные тела нешарообразной формы, в том числе цильпебс, представляющий собой тела в виде цилин­дриков или усеченных конусов, шары из материалов различ­ной прочности или с изменяющейся твердостью по их радиусу.

Для защиты барабана мельницы от износа внутренняя по­верхность его футеруется (через каждые 6-15 мес.) плитами из марганцовистой, хромистой стали или резины. Их профиль (рис. 4.13) существенно влияет на характер движения измель­чающей среды.

 

Рис. 3. 13. Профили ступенчатой брусчатой (а), каскадной (б), волнистой (в), гладкой (г), резиновой (д) и магнитной (е) футеровок

 

При ступенчатой, каскадной и волнистой футеровках (рис. 4.13, ав)мелющие тела поднимаются выше и сила удара их больше, чем при гладкой (рис. 4.13, г) и резино­вой (рис. 4.13, д), используемых обычно для измельчения бо­лее мелких или более мягких материалов. При этом примене­ние резиновых футеровок является более эффективным, по сравнению с металлическими, так как позволяет увеличить срок их службы, уменьшить трудозатраты при перефутеровках барабана, а также энергозатраты и шум при работе мель­ницы. В последнее время начали применять магнитную футе­ровку, состоящую из керамических постоянных магнитов завулканизированных в резину (рис. 4.13, е). Магниты одной стороной прижимают футеровку к барабану, а другой — притягивают магнитный материал (измельчаемую магнетитовую руду, стальные мелющие тела), образуя постоянно восстанав­ливаемый защитный слой.

Технические характеристики барабанных мельниц преставлены в табл.3.16-3.19.

 

 

Таблица 3.16

Основные параметры вращающихся барабанных мельниц

Тип и размер мельниц Внутр. диаметр барабана, мм Длина барабана, мм Рабочий объем барабана, м3 Частота вращения барабана, мин-1 Максим, размер загружаемых кусков, мм Масса мельницы т Мощность электро-двигателя, кВт
Мельницы мокрого (ММС) и сухого (МСС) самоизмельчения
ММС- 1500× 400     0, 6     10, 5  
ММС-2100× 500     1, 4 18-28   18, 7  
ММС-5000× 1800       13, 5-18, 4   167, 2  
ММС-7000× 2300           382, 5  
ММС-7000× бООО              
ММС-9000× ЗООО       11, 5   722, 5  
ММС-9000× 3500 9000 ___,     11, 5      
ММС- 10000× 5000       10, 2     2× 4000
ММС-5700× 1850       13-18   179, 3  
Галечные и рудно-галечные мельницы
МГР-4000× 7500       17, 4 .    
МШГР-4500× 6000       16, 5 -    
МГР-5500× 7500       13, 6 _    
МГР-6000× 12500       13, 2 -    

 

Таблица 3.17

Основные параметры стержневых мельниц (МСЦ) для мокрого измельчения

Тип и размер мельниц Толщина футеровки, мм Внутр. диаметр барабана, мм Длина барабана, мм Рабочий объем барабана, м Частота вращения в % от критич. Масса стержн. загрузки (максим.)т Масса мельницы, т Мощность электро­двигателя, кВт
МСЦ-900× 1800       0, 9 66, 8   5, 2  
МСЦ- 1200× 2400       2, 2 66, 0   13, 5  
МСЦ- 1500× 3000       4, 4 67, 2      
МСЦ-2 100× 2200       6, 5 61, 6      
МСЦ-2 100× 3000       8, 8 64, 9      
МСЦ-2700× 3600         58, 4      
МСЦ-3200× 4500 ПО       58, 9      
МСЦ-3600× 5500         59, 6      
МСЦ-4000× 5500         59, 7      
МСЦ-4500× 6000         60, 8      

 

Таблица 3.18

Основные параметры шаровых мельниц (МШР) для мокрого измельчения

Тип и размер мельниц Толщина футеровки мм Внутр. диаметр барабана, мм Длина барабана мм Рабочий объем барабана, м3 Частота вращения в % от критич. Масса шаров, загрузки (макс.), т Масса мельницы, т Мощность электро­двигателя, кВт
МШР-900× 100       0, 5 83, 7 1, 0 5, 3  
МШР-1200× 1300       1, 2 85, 6 2, 4 10, 5  
МШР-1500× 1600       2, 3 82, 9 4, 8 16, 5  
МШР-2100× 1500       4, 4 80, 3 9, 1 35, 5  
МШР-2 100× 2200       6, 5 80, 3 13, 4 40, 5  
МШР-2 100× 3000       8, 8 80, 3 18, 3 45, 5  
МШР-2700× 2100         78, 9 21, 5    
МШР-2700× 2700         78, 9      
МШР-2700× 3600         78, 9      
МШР-3200× З10О         81, 0      
МШР -3200× 3800         81, 0   -  
МШР-3200× 4500         81, 0      
МШР-3600× 4000 ПО       78, 7      
МШР-3600× 5000 ПО       78, 7      
МШР-4000× 5000         79, 9      
МШР-4500× 5000         80, 4      
МШР-4500× 6000         80, 4   -  
МШР-5000× 6500         74, 0   - -
МШР-6000× 8000         75, 0   - -

Таблица 3.19

Основные параметры шаровых мельниц (МШЦ) для мокрого измельчения

Тип, размер мельниц Толщина фу­теров-ки, мм Внутр. диаметр барабана, мм Длина барабана, мм Рабочий объем барабана, м3 Частота вращения в % от критич. Масса шаров, загрузки (макс.), т Масса мельницы, т Мощность электро­двигателя, кВт
МШЦ-900× 1800       0, 9 83, 7 1, 7 5, 2  
МШЦ-200× 2400       2, 2 85, 6 4, 2    
МШЦ-1500× 3000       4, 4 82, 9 8, 4    
МШЦ-2100× 2200       6, 5 80, 3 12, 5    
МШЦ- 2100× 3000       8, 8 80, 3 17, 1 46, 5  
МШЦ-2700× 3600         78, 9      
МШЦ-3200× 3100         81, 0      
МШЦ-3200× 4500         81, 0      
МШЦ-3600× 5500         78, 7      
МШЦ-4000× 5500         79, 9      
МШЦ-4500× 5500 12С       80, 4      
МШЦ-4500× 6000 12С       80, 4      
МШЦ-4500× 8000 12С       80, 4      
МШЦ-5000× 10500         78, 7    
МШЦ-5500× 6500 12С       74, 0      
МШЦ-5500х10500         74, 0      
МШЦ-6000× 8000         75, 0   -  
МШЦ-8500× 8500         75, 0   - -

 

Основными параметрами, характеризующими механический режим работы барабанной мельницы, являются: относительная частота враще­ния барабана ψ (%), относительное заполнение измельчающей средой барабана мельницы φ (%). В зависимости от частоты вращения барабана мельницы различают следующие режимы движения измельчающих тел: каскадный, водопадный, смешанный. Каскадный режим осуществляется при малой частоте вращения барабана посредством перекатывания из­мельчающих тел без их полета. При водопадном режиме измельчающая среда поднимается по круговым траекториям на большую высоту и па­дает водопадом по параболическим траекториям, нанося удары по руде, находящейся на круговых траекториях. Смешанный режим характери­зуется постепенным переходом от чисто каскадного к чисто водопадно­му режиму.

Сверхкритический режим наступает при частоте вращения бараба­на выше критической, при которой начинает центрифугироватьизмель­чающая среда и при которой работа измельчения равна нулю.

Критическая частота вращения барабана мельницы определяется по формуле [3, 4]

(3.36)

где R - внутренний радиус барабана мельницы, м.

Наиболее высокие показатели измельчения достигаются при сле­дующих значениях φ и ψ:

Мельницы Шаровые Стержневые «Каскад» «Аэрофол»
φ 40-50 35-40 38-42 35-42
ψ 75-80 65-70 70-75 85-85

 

В качестве измельчающей среды применяют шары и стержни из различных марок стали диаметром 15-25 мм. Расход шаров при различ­ной крупности измельчаемого продукта составляет 0, 5-1, 5 кг/т, расход стержней 0, 5-1, 0 кг/т.

В последнее время наблюдается повышенный интерес к проблеме самоизмельчения в барабанных мельницах. Для многих типов руд самоизмельчение дает лучшее раскрытие рудных минералов, повышает качественно-количественные показатели, снижает расход стали (шаров, стержней) и затраты на обогащение руды.

Самоизмельчение применяется для измельчения материалов круп­ностью от 250-500 мм до 0, 3 мм. Сущность процесса рудного самоизмельчения заключается в том, что куски руды крупнее 75 мм (дробящие тела) измельчают в мельнице более мелкие зерна руды и сами измель­чаются. Рудные мельницы типа «Каскад» и «Аэрофол» имеют большой диаметр (до 11-17 м) и сравнительно малую длину - отклонение D/L ≥ 3. Мельницы типа «Каскад» применяют для мокрого рудного самоизмельчения железных, золотосодержащих руд вместо конусных дробилок для среднего и мелкого дробления, стержневых и шаровых мельниц для доизмельчения продукта. Мельницы типа «Аэрофол» применяют для су­хого рудного измельчения на фабриках, обогащающих железные, золо­тосодержащие, урановые и полиметаллические руды, а также для про­изводства цемента. В некоторых случаях в мельницы самоизмельчения загружают 8-10 % шаров диаметром 100-150 мм. Преимущества мель­ниц самоизмельчения: заменяют две-три стадии дробления и одну-две стадии измельчения, обеспечивая получение готового продукта, при этом значительно упрощается технологическая схема фабрики.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.