Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оптроны






Оптрон – это полупроводниковый прибор, в котором конструктивно объединены источник и приёмник излучения, имеющие между собой оптическую связь. В источнике излучения электрические сигналы преобразуются в световые, которые воздействуют на фотоприёмник и создают в нём снова электрические сигналы. Если оптрон имеет только один излучатель и один приёмник излучения, то его называют оптопарой или элементарным оптроном.

Конструктивно в оптронах излучатель и приёмник излучения помещается в корпус и заливается оптически прозрачным клеем.

   
   
   
   
 
 
   
   
   
   
 
 
 
б)
Особую конструкцию имеют оптопары с открытым оптическим каналом. У них между излучателем и фотоприёмником имеется воздушный зазор.

   
   
   
   
 
 
 

 

 

Рис.7.10. Принцип устройства оптопар: А) 1-излучатель, 2-оптически прозрачный клей, 3-фотоприёмник. Б) оптопары с открытым оптическим каналом: 1-излучатель, 2-фотоприёмник, 3-объект
а)

 

 


В другом варианте оптопар с открытым каналом световой поток излучателя попадает в фотоприёмник, отражаясь от какого-либо объекта. Цепь излучателя является управляющей, а цепь фотоприёмника – управляемой и связь входа с выходом осуществляется световым сигналом.

Рассмотрим различные типы оптопар, отличающиеся друг от друга фотоприёмниками.

Резисторные оптопары имеют в качестве излучателя сверхминиатюрную лампочку накаливания или светодиод, дающие видимое излучение. Приёмником излучения является фоторезистор из селенида кадмия.

   
   
   
   
Uупр
Е

 

На рисунке схематически изображена резисторная оптопара (светодиод и фоторезистор), у которой выходная цепь питается от источника постоянного или переменного напряжения Е, и имеет нагрузку Rн. Напряжение Uупр., подаваемое на светодиод, управляет током в нагрузке.

Резисторные оптопары применяются для автоматического регулирования усиления, связи между каскадами, формирования различных сигналов.

 

Диодные оптопары – имеют обычно кремниевый фотодиод и инфракрасный арсенидо-галлиевый светодиод. Фотодиод может работать в фотогенераторном режиме, создавая фото-ЭДС до 0, 8 В.

 

 

Основные параметры диодных оптопар – входные и выходные напряжения и токи для непрерывного и импульсного режима, коэффициент передачи тока.

Применение диодных оптопар весьма разнообразно. Например, на основе диодных оптопар создаются импульсные трансформаторы, не имеющие обмоток. Разновидность диодных оптопар – оптопары, в которых фотоприёмником служит фотоварикап.

Транзисторные оптопары – имеют обычно в качестве излучателя арсенидо-галлиевый светодиод, а в качестве приёмника – биполярный кремниевый фототранзистор типа n-p-n. Оптопары этого типа работают главным образом в ключевом режиме и применяются в коммутаторных устройствах.

 

 

Разновидность транзисторных оптопар – оптопары с полевым фототранзистором. Они отличаются хорошей линейностью выходной ВАХ в широком диапазоне напряжений и токов, и поэтому удобны для аналоговых схем.

Тиристорные оптопары – имеют в качестве фотоприёмника кремниевый фототиристор и применяются в ключевых режимах. Основная область использования – схемы для формирования мощных импульсов, управление мощными тиристорами. Параметры тиристорных оптопар – входные и выходные токи и напряжения.

 

Достоинства оптронов:

1. Отсутствие между входом и выходом обратной связи

2. Сопротивление изоляции между входом и выходом может достигать 1014 Ом, а проходная ёмкость не превышает 2 пФ.

3. Широкая полоса частот пропускаемых колебаний, возможность передачи сигналов с частотой от нуля до Гц.

Недостатки оптронов:

1. Большая потребляемая мощность

2. Невысокая температурная стабильность и радиационная стойкость

3. Сравнительно высокий уровень собственных шумов.

Все эти недостатки устраняются в процессе развития оптоэлектронной техники.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.