Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Структура бетона и ее влияние на прочность и деформативность






Структура бетона оказывает большое влияние на прочность и деформативность бетона. При затворении водой смеси из заполнителей и цемента начинается химическая реакция соединения минералов цемента с водой, в результате которой образуется гель — студнеобразная пористая масса со взвешенными в воде, еще не вступившими в химическую реакцию, частицами цемента и незначительными соединениями в виде кристаллов. В процессе перемешивания бетонной смеси гель обволакивает отдельные зерна заполнителей, постепенно твердеет, а кристаллы постепенно соединяются в кристаллические сростки, растущие с течением времени. Твердеющий гель превращается в цементный камень, скрепляющий зерна крупных и мелких заполнителей в монолитный твердый материал — бетон.
Существенно важным фактором, влияющим на структуру и прочность бетона, является количество воды, применяемое для приготовления бетонной смеси, оцениваемое водоцементным отношением W/C (отношением взвешенного количества воды к количеству цемента в единице объема бетонной смеси). Однако по технологическим соображениям — для достижения достаточной подвижности и удобоукладываемости бетонной смеси — количество воды берут с некоторым избытком,. Так, подвижные бетонные смеси, заполняющие форму под влиянием текучести, имеют W/C=0, 5...0, 6, а жесткие бетонные смеси, заполняющие форму под влиянием механической виброобработки, имеют W/C—0Д..0.4.
Избыточная, химически несвязанная вода частью вступает впоследствии в химическое соединение с менее активными частицами цемента, а частью заполняет многочисленные поры и капилляры в цементном камне и полостях между зернами крупного заполнителя и стальной арматурой и, постепенно испаряясь, освобождает их. По данным исследований, поры занимают около трети объема цементного камня; с уменьшением W/C пористость цементного камня уменьшается и прочность бетона увеличивается. Поэтому в заводском производстве железобетонных изделий применяют преимущественно жесткие бетонные смеси с возможно меньшим значением W/C. Бетоны из жестких смесей обладают большей прочностью, требуют меньшего расхода цемента и меньших сроков выдержки изделий в формах.
Таким образом, структура бетона оказывается весьма неоднородной: она образуется в виде пространственной решетки из цементного камня, заполненной зернами песка и щебня различной крупности и формы, пронизанной большим числом микропор и капилляров, содержащих химически несвязанную воду, водяные пары и воздух. Физически бетон представляет собой капиллярно-пористый материал, в котором нарушена сплошность массы и присутствуют все три фазы — твердая, жидкая и газообразная. Цементный камень также обладает неоднородной структурой и состоит из упругого кристаллического сростка и наполняющей его вязкой массы — геля.
Длительные процессы, происходящие в таком материале, — изменение водного баланса, уменьшение объема твердеющего вязкого геля, рост упругих кристаллических сростков — наделяют бетон своеобразными упруго-пластическими свойствами. Эти свойства проявляются в характере деформирования бетона под нагрузкой, во взаимодействии с температурно-влажностным режимом окружающей среды.
Исследования показали, что теории прочности, предложенные для других материалов, к бетону неприменимы. Зависимость между составом, структурой бетона, его прочностью и деформативностью представляет собой задачу, над которой работают исследователи. Суждения о прочности и деформативности бетона основаны на большом числе экспериментов, выполненных в лабораторных и натурных условиях.

. Призменная прочность

Призменной прочностью Rb называют временное сопротивление сжатию бетонных призм. Она является основной расчётной характеристикой прочности бетона сжатых элементов. Призменная прочность меньше кубиковой. Опыты показывают, что с увеличением высоты призмы (h) влияние сил трения на прочность уменьшается и при отношении %^4 оно практически становится равным нулю, а значение Rb становится постоянным и равным примерно 0, 75 R

4. Усадка бетона и начальные напряжения


Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде (усадка бетона) и увеличиваться в объеме при твердении в воде (набухание бетона). Бетоны, приготовленные на специальном цементе (расширяющемся или безусадочном), не дают усадки. Усадка бетона, как показывают опыты, зависит от ряда причин: 1) количества и вида цемента — чем больше цемента на единицу объема бетона, тем больше усадка, при этом высокоактивные и глиноземистые цементы дают большую усадку: 2) количества воды — чем больше W/C, тем больше усадка; 3) крупности заполнителей — при мелкозернистых песках и пористом щебне усадка больше.
Влияние заполнителей на уменьшение усадки тем сильнее, чем выше их способность сопротивляться деформированию, т. е. чем выше их модуль упругости. При разной крупности зерен заполнителей и меньшем объеме пустот меньше и усадка. Различные гидравлические добавки и ускорители твердения (например, хлористый кальций), как правило, увеличивают усадку.
Обычно усадка бетона происходит наиболее интенсивно в начальный период твердения и в течение первого года, в дальнейшем она постепенно затухает. Скорость усадки зависит от влажности окружающей среды — чем меньше влажность, тем больше усадочные деформации и выше скорость их роста. Усадка бетона под нагрузкой при длительном сжатии ускоряется, а при длительном растяжении, наоборот, замедляется.
Усадка бетона связана с физико-химическими процессами твердения и уменьшения объема цементного геля, потерей избыточной воды на испарение во внешнюю среду, на гидратацию с еще непрореагировавшими частицами цемента. По мере твердения цементного геля, уменьшения его объема и образования кристаллических сростков усадка бетона затухает. Капиллярные явления в цементном камне, вызванные избыточной водой, также влияют на усадку бетона — поверхностные натяжения менисков вызывают давление на стенки капилляров, происходят объемные деформации.
Усадке цементного камня в период твердения бетона препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения. По мере твердения геля образующиеся в нем кристаллические сростки становятся такого же рода связями. Неравномерное высыхание бетона приводит к неравномерной его усадке, что в свою очередь, ведет к возникновению начальных усадочных напряжений. Открытые, быстрее высыхающие поверхностные слои бетона испытывают растяжение, в то время как внутренние, более влажные зоны, препятствующие усадке поверхностных слоев, оказываются сжатыми. Следствием таких начальных растягивающих напряжений являются усадочные трещины в бетоне.
Начальные напряжения, возникающие под влиянием усадки бетона, не учитывают непосредственно в расчете прочности железобетонных конструкций; их учитывают расчетными коэффициентами, охватывающими совокупность характеристик прочности, а также конструктивными мерами — армированием элементов. Уменьшить начальные усадочные напряжения в бетоне можно технологическими мерами — подбором состава, увлажнением среды при тепловой обработке твердеющего бетона, увлажнением поверхности бетона и др., а также конструктивными мерами — устройством усадочных швов в конструкциях.

Влияние времени и условий твердения на прочность бетона. Прочность бетона нарастает в течение длительного времени, но наиболее интенсивный ее рост наблюдается в начальный период твердения. Прочность бетона, приготовленного на портландцементе, интенсивно нарастает первые 28 суток, а на пуццолановом и шлаковом портландцементе медленнее — первые 90 суток. Но и в последующем при благоприятных условиях твердения — положительной температуре, влажной среде — прочность бетона может нарастать весьма продолжительное время, измеряемое годами. Объясняется это явление длительным процессом окаменения цементного раствора — твердением геля и ростом кристаллов. По данным опытов, прочность бетонных образцов, хранившихся в течение 10 лет, нарастала в условиях влажной среды вдвое, а в условиях сухой среды — в 1, 4 раза; в другом случае нарастание прочности прекратилось к концу первого года. Если бетон остается сухим, как это часто бывает при эксплуатации большинства железобетонных конструкций, то по истечении первого года дальнейшего нарастания прочности ожидать уже нельзя.
Процесс твердения бетона значительно ускоряется при повышении температуры и влажности среды. С этой целью железобетонные изделия на заводах подвергают тепловой обработке при температуре до 90 °С и влажности до 100 % или же специальной автоклавной обработке при высоком давлении пара и температуре порядка 170 °С. Эти способы позволяют за сутки получить бетон прочностью ~70% проектной. Твердение бетона при отрицательной температуре резко замедляется или прекращается.

5. Важнейшим свойством бетона является прочность. Лучше всего бетон сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в некоторых конструкциях учитывается прочность на растяжение или на растяжение при изгибе.

Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может определяться и в другом возрасте, например 3; 7; 60; 90; 180 суток.

В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%.

Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0, 95 и имеет следующие значения: Вb1; Вb1, 5; Вb2; Вb2, 5; Вb3, 5; Вb5; Bb7, 5; Вb10; Вb12, 5; Вb15; Вb20; Вb25; Вb30; Вb35; Вb40; Вb50; Вb55; Вb60. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПах10).

Тяжелый бетон имеет следующие марки при сжатии: Мb50; Мb75; Мb100; Мb150; Мb200; Мb250; Мb300; Мb350; Мb400; Мb450; Мb500; Мb600; Мb700; Мb800.

Между классом бетона и его средней прочностью при коэффициенте вариации прочности бетона n = 0, 135 и коэффициенте обеспеченности t = 0, 95 существуют зависимости:

Вb = Rb х0, 778, или Rb = Вb / 0, 778.

При проектировании конструкций обычно назначают класс бетона, в отдельных случаях — марку. Соотношение классов и марок для тяжелого бетона по прочности на сжатие приведены в табл. 1.

Прочность при растяжении. С прочностью бетона на растяжение приходится иметь дело при проектировании конструкций и сооружений, в которых не допускается образование трещин. В качестве примера можно привести резервуары для воды, плотины гидротехнических сооружений и др. Бетон на растяжение подразделяют на классы: Вt0, 8; Bt1, 2; Bt1, 6; Вt2; Bt2, 4; Вt2, 8; Вt3, 2 или марки: Рt10; Bt15; Bt20; Bt25; Bt30; Bt35; Вt40.

Прочность на растяжение при изгибе. При устройстве бетонных покрытий дорог, аэродромов назначают классы или марки бетонов на растяжение при изгибе.

Классы: Вbt0, 4; Вbt0, 8; Вbt1, 2; Bbt1, 6; Вbt2, 0; Вtb2, 4; Вbt2, 8; Вbt3, 2; Вbt3, 6; Вbt4, 0; Bbt4, 4; Вbt4, 8; Вbt5, 2; Вbt5, 6; Вbt6, 0; Вbt6, 4; Вbt6, 8; Вbt7, 2; Вbt8.

Марки: Рbt5; Рbt10; Рbt15; Рbt20; Рbt25; Рbt30; Рbt35; Рbt40; Рbt45; Рbt50; Рbt55; Рbt60; Рbt65; Рbt70; Рbt75; Рbt80; Рbt90; Рbt100.

Прочность бетона на срез и скалывание.

В чистом ви­де срез представляет собой разделение элемента на две части по сечению, к которому приложены перерезываю­щие силы. При этом существенное сопротивление срезу оказывают зерна крупных заполнителей, работающие, как шпонки, и плоскости среза. При срезе распределение напряжений по площади сечения считается равномерным. Временное сопротивление бетона на срез можно опреде­лим, по эмпирической зависимости и железо бетонных конструкциях чистый срез встречается редко; обычно он сопровождается действием продольных сил. Сопротивление бетона скалыванию возникает при из­гибе железобетонных балок до появления в них наклон­ных трещин. Скалывающие напряжения по высоте се­чения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1, 5…2 раза больше .

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.