Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Поток вектора напряженности






Если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадку S, то поток вектора напряженности (раньше мы называли число силовых линий через площадку) будет определяться формулой:

     

где En – произведение вектора на нормаль к данной площадке


Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности ФЕ через эту поверхность.

В векторной форме можно записать – скалярное произведение двух векторов, где вектор .

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

Теорема Гаусса — основная теорема электродинамики, которая применяется для вычисления электрических полей. Она выражает связь между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченной этой поверхностью.

В системе СГСЭ:

.

В системе СИ:

,

где

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

.

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

 

 

34. Потенциальные кривые.

Потенциальная энергия может быть представлена графически. График, выражающий зависимость потенциальной энергии от соответствующей координаты, называется потенциальной кривой. По характеру потенциальной кривой определяется величина и направление силы, действующей на тело вдоль соответствующего направления.

Проанализируем одну из возможных потенциальных кривых. Возьмем кривую изменения потенциальной энергии Еп системы тел, когда в системе одно тело перемещается вдоль оси х (рис. 3.12). Сила действующая на тело

 

.

 

где – угол наклона к оси касательной проведенной в соответствующей точке кривой Еп=f(x).

B точке х1 (, поэтому ) cила противоположна направлению х и препятствует удалению тела из системы. В точке х2 (tgα < 0, сила Fх > 0) сила Fх совпадает с направлением оси х, и способствует движению тела в данном направлении. В точке х0 (tgα = 0) сила на тело не действует. Величину силы можно определить по крутизне потенциальной кривой: чем круче кривая, тем больше численное значение tg α, например, величина силы в точке 2 больше, чем в точке 1.

Резкое возрастание потенциальной кривой вдоль направления движения тела определяет потенциальный барьер, который характеризуется высотой и шириной. Так, для тела, находящейся в точке с координатой х1, высота потенциального барьера Δ Еп, ширина Δ х = (х2 – x1).

Если потенциальный барьер встречается на пути движения тела, как в положительном, так и в отрицательном направлении оси, то, оно находится в потенциальной яме. Форма и глубина потенциальной ямы зависят от природы сил взаимодействия и конфигурации системы тел.

 

 

37. Затухающие колебания.

колебания с постоянно убывающей со временем амплитудой.

Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением (в электромагнитных колебательных контурах).

Колебательная система называется линейной, если её свойства не меняются при колебаниях, то есть такие параметры, как сила тяжести, упругость пружины, сопротивление, емкость, индуктивность не зависят ни от смещения, ни от скорости, ни от ускорения колеблющейся величины. В дальнейшем мы будем рассматривать только линейные системы.

Уравнения затухающих колебаний

Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай - трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F = - bv, v - скорость маятника, b - коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b = const, k = const. x - смещение маятника от положения равновесия.

Второй закон Ньютона в нашем случае запишется так:

Это уравнение и есть дифференциальное уравнение свободных затухающих колебаний пружинного маятника. Его, однако, принято записывать в следующем, так называемом каноническом виде:

- коэффициент затухания, - собственная частота свободных (незатухающих) колебаний пружинного маятника, то, что раньше мы обозначали просто .

Уравнение затухающих колебаний в таком (каноническом) виде описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для  и .

 

 

40. Сложение гармонических колебаний одного направления.

 

Сложение гармонических колебаний одного направления.

Если материальная точка участвует одновременно в двух гармонических колебаниях с одинаковой циклической частотой, то происходит сложение гармонических колебаний. Рассмотрим несколько наиболее простых случаев сложения гармонических колебаний.



1. Круговые частоты и фазы колебаний одинаковы, амплитуды различны: x1=A1sinφ, x2=A2sinφ

тогда x1 + x2 = (A1 + A2)sinφ = Asinφ



2. Круговые частоты и амплитуды одинаковы, фазы различны: x1=A? sinφ, x2=A? sinφ

где φ — разность фаз. Тогда



В результате возникает гармоническое колебание такой же частоты, но отличающееся по фазе от первичных колебаний на половину разности фаз этих колебаний. Амплитуда меньше суммы амплитуд первичных колебаний.



3. Амплитуды одинаковы, круговые частоты мало отличаются друг от друга: x1=A? sinφ, x2=A? sinφ, тогда результирующее колебание оказывается не гармоническим, так как оно не соответствует уравнению x = Asinφ

 

 

43. Опыты Майкельсона-Морли.

 

46. Релятивистское сокращение длины.

 

Лоренцево сокращение, Фицджеральдово сокращение, также называемое релятивистским сокращение длины движущегося тела или масштаба — предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы имеют меньшую длину (линейные размеры в направлении движения), чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.

Эффект значим, только если скорость предмета по отношению к наблюдателю сравнима со скоростью света.

Пусть стержень покоится в инерциальной системе отсчёта K и расстояние между концами стержня, измеренное в К(" собственная" длина стержня), равно l. Пусть далее стержень движется вдоль своей длины со скоростью v относительно некой другой (инерциальной) системы отсчёта K'. В таком случае расстояние l' между концами стержня, измеренное в системе отсчета K', составит

, где c — скорость света.

При этом, расстояния поперёк движения одинаковы в обоих системах отсчета K и K'.

Величина γ, обратная множителю с корнем, называется также Лоренц-фактором. С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки системы отсчёта K' составит

.

 

49. Гидростатика. Давление. Равновесие жидкости в поле силы тяжести. Закон Архимеда.

 

2. Кинематика частицы. Перемещение скорость, ускорение. Кинема́ тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение. Так как всякое движение понятие относительное и имеет содержание только при указании относительно каких именно тел перемещается рассматриваемый объект, то движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей: тело отсчета; систему измерения положения тела в пространстве (систему координат); прибор для измерения времени (часы). Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить вевклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела. Перемещение — векторная физическая величина, равная разности радиус-векторов в конечный и начальный моменты времени: . Иными словами, перемещение — это приращение радиус-вектора за выбранный промежуток времени. Средняя скорость — векторная физическая величина равная отношению вектора перемещения к промежутку времени, за который происходит это перемещение: . Мгновенное ускорение — векторная физическая величина, равная второй производной от радиус-вектора по времени и, соответственно, первой производной от мгновенной скорости по времени: . Характеризует быстроту изменения скорости. Единица ускорения в системе СИ— м/с², в системе СГС — см/с². В случае движения в плоскости вектор ускорения можно разложить по сопутствующему базису: на вектор нормального и тангенциального ускорения: . Здесь — единичный вектор нормали, — единичный вектор касательной. Величина называется нормальным ускорением и характеризует скорость изменения направления движения. Нормальное ускорение выражается через мгновенную скорость и радиус кривизны траектории: . В случае движения по окружности нормальное ускорение называется центростремительным. Как видно из предыдущей формулы, при движении по окружности с постоянной скоростью нормальное ускорение постоянно по модулю и направлено к центру окружности. Величина называется тангенциальным ускорением и характеризует величину изменения модуля скорости: .     5. ДИНАМИКА ЧАСТИЦЫ. Сила, масса, импульс Динамика– это раздел механики, который изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения. Иными словами, динамика изучает вопрос «почему тело движется именно так?» Сила, масса, импульс Сила (F{век}) - мера взаимодействия тел, в результате которого тела деформируются или приобретают ускорение; измеряется в ньютонах (Н). - величина, характеризующая действия одного тела на другое. Силы: Гравитационные Электрические Масса (m) - скалярная физическая величина, мера инертности тела; измеряется в килограммах (кг). свойства: масса системы тел = сумма масс отдельных частей этой системы. масса системы тел, не обменивающихся веществом с окружением, - величина постоянная, и не изменяется при движении этой системы. ~~ отношение масс двух тел обратно отношению их ускорений (m1 / m2 = a2 / a1) ~~ И́ мпульс — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:   8. Третий закон Ньютона Этот закон описывает, как взаимодействуют две материальные точки. Возьмём для примера замкнутую систему, состоящую из двух материальных точек. Первая точка может действовать на вторую с некоторой силой , а вторая — на первую с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия . Современная формулировка Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению: Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно[13]. Историческая формулировка Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны. Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость.     11. Консервативные силы и потенциальная энергия. В физике консервати́ вные си́ лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0. В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия). В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости, силакулоновского (электростатического) взаимодействия. Примером неконсервативной силы является сила трения. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется. Для консервативных сил выполняются следующие равенства: — работа, производимая консервативной силой, определяется только начальным и конечным положением точки её приложения и не зависит от выбора траектории, по которой перемещается тело. — работа консервативных сил по произвольному замкнутому контуру равна 0; — ротор консервативных сил равен 0; — консервативная сила является градиентом некой скалярной функции , называемой силовой. Эта функция равна потенциальной энергии взятой с обратным знаком. Соответственно, и связаны соотношением Таким образом, потенциальная сила всегда направлена в сторону уменьшения потенциальной энергии. Потенциальная энергия — скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в полеконсервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[2]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в Международной системе единиц (СИ) является джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии. Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными (потенциальными). Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.     14. Механическая энергия частицы и закон ее изменения.   Механическая энергия частицы в силовом поле Сумму кинетической и потенциальной энергии - называют полной механической энергией частицы в поле: E=Eкин+U Заметим, что полная механическая энергия Е, как и потенциальная, определяется с точностью до прибавления несущественной произвольной постоянной. Консервативная система — физическая система, работа неконсервативных сил которой равна нулю и для которой имеет место закон сохранения механической энергии, то есть сумма кинетической энергии и потенциальной энергии системы постоянна. Примером консервативной системы служит солнечная система. В земных условиях, где неизбежно наличие сил сопротивления (трения, сопротивления среды и др.), вызывающих убывание механической энергии и переход её в другие формы энергии, например в тепло, консервативная система осуществляются лишь грубо приближённо. Например, приближённо можно считать консервативной системой колеблющийся маятник, если пренебречь трением в оси подвеса и сопротивлением воздуха. Диссипативная система — это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой. Диссипативная система характеризуется спонтанным появлением сложной, зачастую хаотичной структуры. Отличительная особенность таких систем — несохранение объёма в фазовом пространстве, то есть не выполнение Теоремы Лиувилля. Простым примером такой системы являются ячейки Бенара. В качестве более сложных примеров называются лазеры, реакция Белоусова — Жаботинского и сама биологическая жизнь. Термин «диссипативная структура» введен Ильёй Пригожиным. Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии называется первым началом термодинамики. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии. Закон сохранения энергии является универсальным. Для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря, различающихся для разных систем. Согласно теореме Нётер, закон сохранения энергии является следствием однородности времени. W=Wk+Wп=const   17. Момент импульса относительно оси. Момент импульса материальной точки относительно точки O определяется векторным произведением , где — радиус-вектор, проведенный из точки O, — импульс материальной точки. Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z. Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим . Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса): . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело: .     20. Реактивное движение уравнение Мещерского. Реактивным называется движение тела, при котором происходит присоединение илиотбрасывание массы. В процессе движения происходит изменение массы тела: за время dt тело массы m присоединяет (поглощает) или отбрасывает (испускает) массу dm со скоростью относительно тела; в первом случае dm> 0, во втором dm< 0. Рассмотрим такое движение на примере ракеты. Перейдем в инерциальную систему отсчета K', которая в данный момент времени t движется с той же скоростью , что и ракета – такая ИСО называется сопутствующей – в этой системе отсчета ракета в данный момент t покоится(скорость ракеты в этой системе =0). Если сумма внешних сил, действующих на ракету, не равна нулю, то уравнение движения ракеты в системе K', но так как все ИСО эквивалентны, то и в системе К уравнение будет иметь тот же самый вид: Это – уравнение Мещерского, описывающее движение любого телас переменной массой}. В уравнении масса m – величина переменная, и ее нельзя внести под знак производной. Второе слагаемое в правой части уравнения называется реактивной силой Для ракеты реактивная сила играет роль силы тяги, но в случае присоединения массы dm/dt> 0 и реактивная сила будет силой торможения (например, при движении ракеты в облаке     23. Зако́ н сохране́ ния моме́ нта и́ мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем. Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота. В упрощённом виде: , если система находится в равновесии.   26. Кинетическая энергия вращательного движения. Формулу кинетической энергии вращательного движения. Пусть тело вращается с угловой скоростью ω относительно неподвижной оси. Любая небольшая частица тела совершает поступательное движение по окружности со скоростью , где ri расстояние до оси вращения, радиус орбиты. Кинетическая энергия частицымассы mi равна . Полная кинетическая энергия системы частиц равна сумме их кинетических энергий. Просуммируем формулы кинетической энергии частиц тела и вынесем за знак суммы половину квадрата угловой скорости, которая одинакова для всех частиц, . Сумма произведений масс частиц на квадраты их расстояний до оси вращения является моментом инерции тела относительно оси вращения . Итак, кинетическая энергия тела, вращающегося относительно неподвижной оси, равна половине произведения момента инерции тела относительно оси на квадрат угловой скорости вращения   . (11.1)   С помощью вращающихся тел можно запасать механическую энергию. Такие тела называются маховиками. Обычно это тела вращения. Известно с древности применение маховиков в гончарном круге. В двигателях внутреннего сгорания во время рабочего хода поршень сообщает механическую энергию маховику, который затем три последующих такта совершает работу по вращению вала двигателя. В штампах и прессах маховик приводится во вращение сравнительно маломощным электродвигателем, накапливает механическую энергию почти в течение полного оборота и в кратковременный момент удара отдает ее на работу штампования. Известны многочисленные попытки применения вращающихся маховиков для привода в движение транспортных средств: легковых автомобилей, автобусов. Их называют махомобили, гировозы. Таких экспериментальных машин было создано немало. Было бы перспективно применять маховики для аккумулирования энергии при торможении электропоездов с целью использования накопленной энергии при последующем разгоне. Известно, что маховичный накопитель энергии используется на поездах метрополитена Нью-Йорка.   29. Гравитационное поле. Под гравитационным полем Земли понимается поле силы тяжести (точнее, ускорения силы тяжести), которая определяется как равнодействующая двух основных сил: силы притяжения (тяготения) Земли и центробежной силы, вызванной ее суточным вращением. Величина силы тяжести на поверхности Земли зависит от широты места и распределения плотности внутри Земли. Вследствие этого знание гравитационного поля Земли позволяет находить ее фигуру и внутреннее строение. Гравитационное поле определяет также внешнюю баллистику Земли, что играет особо важную роль для космических.полетов. Данные о гравитационном поле широко используются в гравиметрической разведке при глубинных исследованиях Земли, поиске и разведке различных полезных ископаемых (нефти, газа, различных руд), при инженерно-геологических изысканиях, астрономо-геофизических измерениях, для определения высот пунктов и т. д. Согласно одному из основных законов физики – закону всемирного тяготения И. Ньютона все тела притягиваются друг к другу с силой, пропорциональной их массе и обратно пропорциональной квадрату расстояния между ними. Математически этот закон выражается формулой F=Gm1m2/r2, (4.1) где F – сила притяжения точечных масс друг к другу, Н; G – гравитационная постоянная, Нм2/кг2; m1 и m2 – взаимно.притягивающиеся (гравитирующие) массы, кг; r – расстояние, по прямой между их центрами, м. Величина гравитационной постоянной не зависит ни от химических, ни от физических свойств гравитирующих масс, ни от величины и направления скорости их движения, ни от свойств и степени заполнения среды, разделяющей эти массы, и определяется только выбранной системой единиц длины, массы и времени. Впервые гравитационную постоянную, определил Г. Кавендиш в 1798г. при помощи очень чувствительного прибора – крутильных весов. Примечательно, что при низких технических возможностях того времени Кавендиш получил результат, лишь на 1 % отличающийся от современного. Первый точный эксперимент по проверке независимости гравитационной постоянной от свойств вещества выполнил в 1906– 1909 гг. венгерский физик Р. Этвеш. Как и Г. Кавендиш, он использовал крутильные весы с той лишь разницей, что в качестве притягивающихся масс экспериментировал с телами из разного материала – легкого и тяжелого, в том числе из древесины, меди, алюминия и др.   В настоящее время гравитационная постоянная определена с большой точностью..В системе СИ G=(6, 6726± 0, 0005)·10-11 Нм2/кг2. Она постоянна для Вселенной и является одной из фундаментальных констант физики.     32. Задача Кеплера. В классической механике, задача Кеплера – это частный случай задачи двух тел, в которой два тела взаимодействуют посредством центральной силы F, изменяющейся по величине обратно пропорционально квадрату расстояния r между ними. Сила может быть как притягивающей, так и отталкивающей. Задача состоит в нахождении зависимости координат или скоростей тел от времени при заданных массах и начальных значениях скоростей и координат. С помощью классической механики решение может быть выражено через Кеплеровы орбиты, используя шесть элементов орбит. Задача Кеплера названа в честь Иоганна Кеплера, который предложил законы Кеплера движения планет (которые являются частью классической механики и позволяют решить задачу Кеплера для орбит планет) и исследовал типы сил, которые должны приводить к существованию орбит, удовлетворяющих законам Кеплера (так называемая обратная задача Кеплера). Приложения Задача Кеплера проявляет себя во многих случаях, и некоторые не относятся к физике и были изучены ещё самим Кеплером. Задача Кеплера важна для небесной механики, теории тяготения Ньютона, подчиняющейся закону обратных квадратов. Примеры включают движение спутников вокруг планет, движение планет вокруг их солнц, движение двойных звёзд вокруг друг друга. Задача Кеплера также важна для случая движения двух заряженных частиц, между которыми действуют силы Кулона, также подчиняющихся закону обратных квадратов. В качестве примера можно привести атом водорода, позитроний и мюоний, - эти случаи играют важную роль в моделировании систем для проверки физических теорий и измерения физических констант. Задача Кеплера и задача простого гармонического осциллятора являются двумя наиболее фундаментальными задачами классической механики. Это единственные два случая, имеющих замкнутые орбиты, то есть, объект возвращается в ту же самую начальную точку с той же самой скоростью (Задача Бертрана). Часто задача Кеплера используется для развития новых методов классической механики, таких как Лагранжева механика, Гамильтонова механика, Уравнение Гамильтона — Якоби, переменные действие-угол. Задача Кеплера сохраняет вектор Лапласа — Рунге — Ленца, который был обобщён для других взаимодействий. Решение Кеплеровой задачи позволяет учёным показать, что движение планет может быть исчерпывающим образом описано законами классической механики и классической теорией тяготения Ньютона; научное объяснение движения планет сыграло важную роль в распространении просвещения. Математическое определение Центральная сила 'F, действующая на два тела, которая изменяется по величине по закону обратных квадратов в зависимости от r между телами: где k – это постоянная и представляет собой единичный вектор, направленный вдоль прямой, соединяющей два тела. Сила может быть как притягивающей (k< 0), так и отталкивающей (k> 0). Соответствующий скалярный потенциал:     35. Гармонический осциллятор. Условие гармонических колебаний. Гармони́ ческий осцилля́ тор (в классической механике) — система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука): где k — коэффициент жёсткости системы. Если F — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором. Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды. Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором. Если трение не слишком велико, то система совершает почти периодическое движение — синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения. Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания. Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине, торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь). Гармоническими колебаниями называются колебания, происходящие по закону sin или cos. Например, x(t)=A cos(wt+j0), где x(t) -- смещение частицы от положения равновесия, A -- максимальное смещение или амплитуда, wt+j0 -- фаза колебаний, j0 -- начальная фаза (при t=0), -- циклическая частота, -- просто частота колебаний. Система, совершающая гармонические колебания, называется гармоническим осциллятором. Существенно, что амплитуда и частота гармонических колебаний постоянны и не зависят друг от друга. Условия возникновения гармонических колебаний: на частицу (или систему частиц) должна действовать сила или момент сил, пропорциональные смещению частицы из положения равновесия и стремящиеся вернуть ее в положение равновесия. Такая сила (или момент сил) называется квазиупругой; она имеет вид , где k называется квазижесткостью. В частности это может быть и просто упругая сила, приводящая в колебания пружинный маятник, колеблющийся вдоль оси x. Уравнение движения такого маятника имеет вид: или , где введено обозначение . Непосредственной подстановкой нетрудно убедиться, что решением уравнения является функция x=A cos(w0t+j0), где A и j0 -- постоянные величины, для определения которых следует задать два начальных условия: положение x(0)=x0 частицы и ее скорость vх(0)=v0 в начальный (нулевой) момент времени. Это уравнение представляет собою динамическое уравнение любых гармонических колебаний с собственной частотой w0. Для грузика на пружинке период колебаний пружинного маятника .     38. Механическая энергия осциллятора.   41. Вынужденные колебания. Из-за наличия трения свободные колебания постепенно затухают и через некоторое время прекращаются. Чтобы затухания не было, на колеблющееся тело должно периодически воздействовать какое-либо внешнее тело. Например, волна, поднимающая и опускающая буек (рис. 7.7), рука человека, подталкивающая качели (рис. 7.8). При этом колебания качелей или буйка перестают быть свободными. Их называют вынужденными. Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными. Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил сопротивления. Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0. Например, если дергать груз, подвешенный на пружине с частотой , то он будет совершать гармонические колебания с частотой внешней силы , даже если эта частота не совпадает с частотой собственных колебаний пружины. Пусть на систему действует периодическая внешняя сила . В этом случае можно получить следующее уравнение, описывающее движение такой системы:
(7.5)

где . При вынужденных колебаниях амплитуда колебаний, а, следовательно, и энергия, передаваемая колебательной системе, зависят от соотношения между частотами и , а также от коэффициента затухания .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время ω t для установления вынужденных колебаний. В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы. Время установления по порядку величины равно времени затухания ω свободных колебаний в колебательной системе. Установившиеся вынужденные колебания груза на пружине происходят по гармоническому закону с частотой, равной частоте внешнего воздействия. Можно показать, что в установившемся режиме решение уравнения (7.6) записывается в виде:

,

где

,
.

Таким образом, вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (то есть системы с определенными значениями и ) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отличаются по фазе от вынуждающей силы. Сдвиг по фазе зависит от частоты вынуждающей силы.

 

44. Постулаты СТО.

 

Постулат 1 (принцип относительности Эйнштейна). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, чтоформа зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.

Формально, принцип относительности Эйнштейна распространил классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла. Однако, согласно последним (и это можно считать эмпирически установленным, так как уравнения выведены из эмпирически выявленных закономерностей), скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Принцип относительности в таком случае говорит, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.

Принцип постоянства скорости света противоречит классической механике, а конкретно — закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным — неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что «расстояния» также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе — за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительнопреобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов.Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт, согласно современной квантовой теории поля (уравнения которой изначально строятся как релятивистски инвариантные) связан с безмассовостью электромагнитного поля (фотона). Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость и скорость света [8]. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия.

В связи с этим второй постулат следует формулировать как существование предельной (максимальной) скорости движения. По своей сути она должна быть одинаковой во всех ИСО, хотя бы потому, что в противном случае различные ИСО не будут равноправны, что противоречит принципу относительности. Более того, исходя из принципа «минимальности» аксиом, можно сформулировать второй постулат просто как существование некоторой скорости, одинаковой во всех ИСО, а после вывода соответствующих преобразований — показать, что это предельная скорость (потому, что подстановка в эти формулы скоростей больше этой скорости приводит к мнимости координат).

 

47. Преобразования Лоренца.

Преобразование Лоренца (лоренцево преобразование) псевдоевклидова векторного пространства — это линейное преобразование , сохраняющее индефинитное скалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство

где треугольными скобками обозначено индефинитное скалярное произведение в псевдоевклидовом пространстве .

Аналогично, преобразование Лоренца (лоренцево преобразование) псевдоевклидова аффинного пространства — это аффинное преобразование, сохраняющее расстояние между точками этого пространства (это расстояние определяется как длина вектора, соединяющего данные точки, с помощью индефинитного скалярного произведения).

Общие свойства[править | править вики-текст]

Так как любое аффинное преобразование является композицией параллельного переноса (очевидным образом, сохраняющего расстояние между точками) и преобразования, имеющего неподвижную точку, то группа преобразований Лоренца аффинного пространства (группа Пуанкаре) получается из группы преобразований Лоренца векторного пространства (группа Лоренца) такой же размерности путём добавления к ней всевозможных параллельных переносов.

Если подпространство инвариантно относительно лоренцева преобразования , то и его ортогональное (в смысле данного индефинитного скалярного произведения) дополнение тоже инвариантно относительно преобразования , причем . Однако, в отличие от ортогональных преобразований евклидовых пространств, равенство , где символ означает прямую сумму подпространств, вообще говоря, не имеет места (оба подпространства и могут содержать одни и те же ненулевые изотропные векторы, то есть , так как любой изотропный вектор ортогонален сам себе).[1]

 

50. Элементы гидродинамики. Движение по трубам. Уравнение Бернулли.

 

 

Гидродинамика — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкости и газа. Как и в других разделах физики сплошных сред, прежде всего, осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения. Идеальная среда С точки зрения механики, жидкостью называется вещество, в котором в равновесии отсутствуют касательные напряжения. Если движение жидкости не содержит резких градиентов скорости, то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры, то можно пренебречь и теплопроводностью, что и составляет приближение идеальной жидкости. В идеальной жидкости, таким образом, рассматриваются только нормальные напряжения, которые описываются давлением. В изотропной жидкости, давление одинаково по всем направлениям и описывается скалярной функцией.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь — плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения. Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых — единица энергии, приходящейся на единицу объёма жидкости. Это соотношение, выведенное Даниилом Бернулли в 1738 г., было названо в его честь уравнением Бернулли. Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:. Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности ρ:. Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.


 

 

3. Кинематика вращательного движения вокруг неподвижной оси. Как уже отмечалось, вращательным движением абсолютно твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения, и описывают окружности, центры которых лежат на этой оси. Рассмотрим твердое тело, которое вращается вокруг неподвижной оси (рис. 1.6). Тогда отдельные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка А движется по окружности радиуса R. Ее положение через промежуток времени Δ t зададим углом Δ φ. Угловой скоростью вращения называется вектор, численно равный первой производной угла поворота тела по времени и направленный вдоль оси вращения по правилу правого винта: (1.18) Единица измерения угловой скорости радиан в секунду (рад/с). Таким образом, вектор ω определяет направление и быстроту вращения. Если ω =const, то вращение называетсяравномерным. Угловая скорость может быть связана с линейной скоростью υ произвольной точки А. Пусть за время Δ t точка проходит по дуге окружности длину пути Δ s. Тогда линейная скорость точки будет равна: (1.19) При равномерном вращении его можно охарактеризовать периодом вращения Т – временем, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2π: Число полных оборотов, совершаемых телом при равномерном движении по окружности, в единицу времени называетсячастотой вращения: откуда Для характеристики неравномерного вращения тела вводится понятие углового ускорения. Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени: (1.20) При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора угловой скорости (рис. 1.7); при ускоренном движении вектор ε направлен в ту же сторону, что и ω (dω /dt > 0), и в противоположную сторону при замедленном вращении (dω /dt < 0). Выразим тангенциальную и нормальную составляющие ускорения точки A вращающегося тела через угловую скорость и угловое ускорение: (1.21) (1.22) В случае равнопеременного движения точки по окружности (ε =const): где ω 0 - начальная угловая скорость. Поступательное и вращательное движения твердого тела являются лишь простейшими типами его движения. В общем случае движение твердого тела может быть весьма сложным. Однако в теоретической механике доказывается, что любое сложное движение твердого тела можно представить как совокупность поступательного и вращательного движений.     6. Первый закон Ньютона Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции. Инерция — это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность — это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела. Современная формулировка В современной физике первый закон Ньютона принято формулировать в следующем виде[3]: Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакиесилы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения. Историческая формулировка Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде: Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен, поэтому ньютоновская формулировка была заменена постулатом существования инерциальных систем отсчета.     9. Неинерциальные системы отсчёта. Силы инерции. Неинерциальная система отсчёта — произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система. При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.   Классическая механика постулирует следующие два принципа: время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта; пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта. Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона. Основное уравнение динамики относительного движения материальной точки имеет вид:, где — масса тела, — ускорение тела относительно неинерциальной системы отсчёта, — сумма всех внешних сил, действующих на тело, — переносное ускорение тела, — Кориолисово ускорение тела. Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции: — переносная сила инерции — сила Кориолиса Сила инерции — фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения F1+F2+…Fn = ma к виду F1+F2+…Fn–ma = 0 Где Fi — реально действующая сила, а –ma — «сила инерции». Среди сил инерции выделяют следующие: простую силу инерции; центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта; силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта; С точки зрения общей теории относительности, гравитационные силы в любой точке — это силы инерции в данной точке искривлённого пространства Эйнштейна Центробежная сила — сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси вращения (отсюда и название). Принцип эквивалентности сил гравитации и инерции — эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное тело — гравитационная или сила инерции.» Формулировка Эйнштейна Исторически, принцип относительности был сформулирован Эйнштейном так: Все явления в гравитационном поле происходят точно так же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы     12. Потенциальная энергия центральных сил Определение: силы, действующие только по прямой, соединяющей частицы, и зависящие только от расстояния между ними, называются центральными. Следовательно, общим для центральных сил будет следующий силовой закон: Работа любой центральной силы будет: , следовательно, результат интегрирования не зависит от пути и определяется лишь начальным r1 и конечным r2 положениями траектории:





© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.