Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Парабола






 

Определение: Параболой называется геометрическое место точек плоскости, равноудаленных от некоторой точки, называемой фокусом параболы и некоторой прямой, называемой директрисой параболы.

Уравнение параболы принятo записывать в следующем виде:

y2 = 2px, p> 0 (1)

- каноническое уравнение параболы.

Свойства параболы непосредственно следуют из

свойств уравнения:

1.Абсцисса любой точки параболы неотрицательна.

2.Парабола проходит через начало координат.

3.Парабола симметрична относительно оси абсцисс.

4.При неограниченном возрастании абсциссы x ордината у возрастает по абсолютной величине.

Точка F(; 0) называется фокусом параболы, прямая - директрисой.

Величина р называется фокальным параметром или просто параметром параболы.

 

Эллипс

Определение. Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух данных точек F1 и F2 этой плоскости, называемых фокусами эллипса, есть величина постоянная, равная 2 а (а > 0), большая, чем расстояние между фокусами.

Для составления уравнениэллипса выберем прямоугольную декартову систему координат так, чтобы ось ОХ

 

проходила через фокусы F1 и F2, а начало координат — точка О находилась в середине отрезка F1F2.

Обозначим F1F2 = 2с. Тогда F1(-с, 0), F2(c, 0). Пусть М(х, у) – произвольная точка эллипса. Тогда MF1+ MF2= 2 а, а > с.

 

Так как , и уравнение принимает вид:

. (2)

Пусть координаты точки М11, у1)удовлетворяют уравнению (2).

Обозначим r1 = F1M1, r2 = F2M2фокальные радиусы точек М1 М2. Тогда , , значит, r1+r2=2 a.

Теперь по свойствам уравнения (2) исследуем геометрические свойства эллипса.

1. Оси ОХ и ОУ являются осями симметрии эллипса. Следовательно, эллипс достаточно исследовать только в первой координатной четверти.

2. Эллипс пересекает координатные оси в точках А1(- а, 0), А2(а, 0), В1(0, b), В2(0, - b), называемых вершинами эллипса.

3. Эллипс расположен в прямоугольнике, ограниченном прямыми х= а, у = b.

4. Из уравнений следует, что при возрастании х от 0 до а в первой координатной четверти, у убывает от b до 0.

По полученным свойствам строим эллипс Отрезок А1А2 и его длина 2 а называются большой осью эллипса, а отрезок B1B2 и его длина 2 b называются малой осью эллипса. Отрезок ОА1 с длиной а и отрезок ОВ1 с длиной b называются соответственно большой и малой полуосями эллипса. Длина отрезка F1F2=2 с называется фокусным расстоянием, начало координат— центр эллипса.

Если а = b, то получаем каноническое уравнение окружности

 

Уравнения х = a cost, у = b sint -

Параметрические уравнения эллипса.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.