Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод круглоцилиндрической поверхности скольжения






Рис. 2. Метод круглоцилиндрической поверхности скольжения

Метод круглоцилиндрической поверхности скольжения целесообразно применять, когда откос сложен однородными грунтами. Метод предполагает, что сползание грунта может произойти лишь в результате вращения оползающего массива вокруг центра О (рис. 2). Следовательно, поверхность скольжения ВВ в данном случае будет представлена дугой некоторого круга с радиусом r, очерченного из центра О. Оползающий массив рассматривается при этом как некоторый твердый блок, всеми своими точками участвующий в одном общем движении.

Степень устойчивости откоса оценивается различными методами («метод площадей», «метод круга трения» и т.д.). Принципиально наиболее простым из них и одновременно наиболее распространенным в нашей стране является так называемый метод моментов, сущность которого заключается в следующем.

Оползающий массив находится под воздействием двух моментов: момента M вр, вращающего массив, и момента M уд, удерживающего массив. Коэффициент устойчивости склона K у определяется отношением этих моментов, т.е.

K у = M уд / M вр. (18)

Грунтовые воды оказывают взвешивающее влияние на породы и фильтрационное (гидродинамическое) давление на весь массив, как было описано выше. Вращающий момент определяется умножением сдвигающих сил на плечо до центра вращения О, а удерживающий момент - умножением сил сопротивления сдвигу на аналогичное плечо. При этом, так как угол наклона касательной к поверхности скольжения и веса отдельных частей массива не постоянны, приходится расчленять воображаемый оползневой массив (сползающий блок) на n расчетных отсеков, для каждого из которых определяют силы сопротивления сдвигу и сдвигающие силы. Тогда коэффициент запаса устойчивости склона находится как отношение сумм тех и других моментов:

K у = Σ M удM вр. (19)

Подробный вывод окончательных формул для определения коэффициента устойчивости методом цилиндрических поверхностей приведен у многих авторов. Поэтому мы их здесь дадим без выводов.

При отсутствии грунтовых вод

(20 -а)

При простом затоплении откоса

(20-б)

При воздействии на откос фильтрационного потока:

(20-в)

Кроме участвующих в написанных выше формулах сил, в грунтовом массиве имеются еще неизвестные по величине давления грунта на вертикальные боковые грани отсеков. Последние силы являются внутренними по отношению ко всему сползающему массиву и внешними по отношению к отдельным выделенным элементам. Так как независимо от величины и направления боковых давлений сумма всех вертикальных сил должна равняться общему весу сползающего клина, то в методах круглоцилиндрических поверхностей скольжения принимается, что силы бокового давления, действующие на вертикальные грани отдельных элементов грунта, можно не учитывать при определении условий равновесия всего сползающего массива.

Из других способов, использующих круглоцилиндрическую поверхность скольжения, следует упомянуть метод круга трения (приемы Гультина и Петерсона, Казагранде, Крея, Тейлора, Гольдштейна, Федорова и др.), метод многоугольника сил Фрелиха, метод Како, метод Чугаева-Вяземского, метод Бишопа и пр. Все они являются сравнительно эффективными для оценки степени устойчивости склонов, но трудно применимы для определения величины оползневого давления. То же следует сказать о методах расчета устойчивости откоса по кривой скольжения, имеющей форму логарифмической спирали (например, метод Рендулика).

На практике рассматриваемый метод часто осложняется неопределенностью в положении центра вращения О. Его координаты, а также радиус r определяются так, чтобы отразить в расчете наиболее невыгодное положение принимаемой поверхности скольжения, при котором значение коэффициента устойчивости K у получается минимальным из возможных для данного склона (откоса). Очень часто положение центра О устанавливают подбором путем проведения нескольких расчетов для отыскания наиболее опасного для данного случая положения поверхности скольжения. Такой ход расчета связан со значительной трудоемкостью.

Имеются и другие причины, по которым метод круглоцилиндрической поверхности скольжения сложно использовать при проектировании противооползневых удерживающих конструкций глубокого заложения. Например, это связано с тем, что оползневое проявление чаще всего развивается в тех естественных склонах, толща которых сложена пластами различных пород (нередко со слабыми прослойками). Для таких же случаев неоднородных грунтов расчет методом круглоцилиндрической поверхности скольжения не вполне пригоден.

 

27. Оползни скольжения и оползни разжижения. Меры борьбы с оползнями

Оползни скольжения и оползни разжижения. Оползни скольжения имеют место при зафиксированных поверхностях скольжения, например у прислоненных откосов, когда при строи­тельстве грунты укладывают на поверхность уже существующих уплотнившихся откосов земляных сооружений или когда природные склоны или насыпи при нарушении равновесия оползают по фиксированной поверхности скальных или других плотных пород.

Оползни разжижения имеют место в горных областях при катастрофическом выпадении дождей или при весьма быстром таянии снегов. Они представляют собой грязекаменные и водокаменные потоки, которые называют обычно селями.

Сели делятся на связные (структурные) и турбулентные (неструктурные) потоки.

Связными (структурными) считают такие селевые потоки, при движении которых не происходит заметного перемешивания оползающих масс в ядре потока. Структурные потоки дают только положительную аккумуляцию и не образуют размывов.

Турбулентные грязекаменные и водокаменные сели, в которых происходит значительное перемешивание грунтовых масс, имеют широкое распространение в горных местностях.

Вопрос о движении селевых потоков рассматривается на базе гидрологических расчетов и теории движения вязких жидкостей, составляя специальную область расчетов, выходящую за рамки курса механики грунтов.

Меры борьбы с оползнями. Нарушение устойчивости земляных масс часто сопровождается значительными разрушениями дорог, мостов, жилых и промышленных зданий и других сооружений, расположенных на оползающих массивах, а иногда и человеческими жертвами, что вызывает необходимость разрабатывать и осуществлять активные меры борьбы с оползнями и другими нарушениями устойчивости земляных масс.

Меры борьбы с этими нарушениями (оползнями, селями и др.) устанавливают на основе тщательного изучения природных физико-геологических условий, уяснения основных причин неустойчивости и аналитических расчетов предельного равновесия рассматриваемых массивов грунта.

Основными мерами по увеличению устойчивости массивов грунта и борьбе с оползнями будут:

1) восстановление и усиление естественных упоров оползающих масс (укрепление берегов от размывов, устройство волнобойных сооружений, применение удерживающих подпорных стен, ограждений, направляющих селевые потоки, и пр.);

2) регулирование водного режима грунтовых масс (осушение оползневых участков, устройство поверхностного водоотвода и спрямление водотоков, применение глубинного горизонтального и вертикального дренажей и пр.);

3) уменьшение градиента нагрузок (уполаживание откосов по расчетам, базирующимся на опытном определении сопротивления грунтов сдвигу; уменьшение внешних нагрузок и пр.).

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.