Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Полимеров






Наличие в растворах высокомолекулярных соединений вытянутых гибких макромолекул влияет на такие свойства растворов, как осмотическое давление и вязкость.

Осмотическое давление растворов низкомолекулярных веществ подчиняется закону Вант-Гоффа, который может быть записан в такой форме:

где – массовая концентрация раствора;

- масса одного моля растворенного вещества.

 

Уравнение для осмотического давления растворов высокомолекулярных соединений содержит дополнительный член, учитывающий взаимодействие гибких макромолекул в растворе друг с другом и с растворителем:

где – постоянная, зависящая от природы растворителя и растворенного вещества.

 

Разделив правую и левую часть уравнения на , получим:

Графическая зависимость величины от имеет вид прямой, не проходящей через начало координат (рис. 8.2). Отрезок, отсекаемый этой прямой на оси ординат, равен . На изучении зависимости осмотического давления от концентрации раствора основан один из самых распространенных методов определения молекулярной массы высокомолекулярных соединений. По этому методу измеряют осмотическое давление раствора полимера при нескольких массовых концентрациях, строят графическую зависимость от , по графику находят и рассчитывают . Определяемая молекулярная масса полимера будет средней величиной.

По вязкости растворы высокомолекулярных веществ резко отличаются от растворов низкомолекулярных веществ и золей. При одной и той же концентрации вязкость растворов полимеров значительно больше вязкости растворов низкомолекулярных веществ, и, с увеличением концентрации, она быстро возрастает (рис. 8.3).

 

 

 

Рис. 8.2. Зависимость от концентрации раствора

полимера.

 

 

 

Рис. 8.3. Зависимость вязкости раствора от его

концентрации:

1 - для раствора низкомолекулярного вещества;

2 - для золя; 3 - для раствора полимера.

 

Такая высокая вязкость растворов высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т.е. увеличивают вязкость.

Для характеристики вязкости очень разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение:

где – вязкость раствора и растворителя соответственно;

- удельная вязкость раствора;

- константа, имеющая определенное значение для каждого полимергомологического ряда. Константу К определяют, измеряя молекулярную массу наиболее низкомолекулярных членов данного полимергомологического ряда каким-нибудь другим независимым методом, например, криоскопическим;

- молекулярная масса полимера;

- концентрация раствора, выраженная в «основных молях» на литр. «Основной моль» - число граммов полимера, равное молекулярной массе мономера, из которого построена макромолекула.

 

Согласно уравнению Штаудингера вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На этой зависимости основан один из методов определения молекулярной массы полимеров.

Вязкость раствора полимера зависит от природы растворителя.

Чем лучше полимер растворяется в данном растворителе, тем более вытянуты макромолекулы и тем больше вязкость раствора.

С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов.

При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора.

В растворах достаточно высокой концентрации появляются ассоциаты макромолекул, также имеющие вытянутую форму. Эти ассоциаты и макромолекулы, взаимодействуя друг с другом, могут образовывать пространственные структуры, затрудняющие течение. При увеличении скорости течения эти структуры разрушаются и вязкость растворов полимеров снижается. Разрушение сравнительно непрочных полимерных структур можно вызвать и чисто механическим путем – встряхиванием, перемешиванием.

Увеличение концентрации полимера в растворе может привести к образованию настолько прочной структуры, что раствор потеряет текучесть, т. е. превратится в студень.

Повышение температуры увеличивает интенсивность молекулярного движения, препятствует образованию ассоциатов и структур и, следовательно, снижает вязкость растворов полимеров.

 

 

Лекция 9. Застудневание растворов и студни полимеров

 

Классификация студней. Условия их образования.

Механизм процессов гелеобразования и структура полимерных гелей.

Реология гелей. Реологические теории.

 

В отделочном производстве широко используются полимеры, растворы которых способны к застудневанию. Эти системы используются в печатании текстильных материалов для приготовления печатных красок.

Застудневание полимерного раствора можно охарактеризовать как процесс непрерывного увеличения вязкости, сопровождающийся постепенным нарастанием эластических свойств. Застудневание приводит к затвердению системы и переходу в однородную нетекучую эластичную массу – студень или гель – в результате образования структурной сетки полимера, пронизывающей весь объем системы и удерживающей растворитель.

Основной причиной застудневания в полимерных системах является усиление взаимодействия между макромолекулами полимера, находящимися в растворе или их агрегатами, вследствие частичного понижения растворимости полимера (или каких-либо его функциональных групп) в растворителе.

Застудневание может быть вызвано либо изменением температуры, либо изменением состава растворителя при данной температуре, т.е. введением осадителя.

Важное условие застудневания - достижение критической концентрации раствора, характерной для каждой пары полимер-растворитель.

Застудневание не является конечной стадией изменения системы во времени – оно является кинетическим процессом и развивается до наступления равновесного состояния, сопровождающегося разделением системы на две фазы: равновесный студень или гель постоянного состава и раствор полимера, находящийся в равновесии со студнем (синерезис студня). Если концентрация раствора полимера соответствует равновесной концентрации студня, застудневание не сопровождается синерезисом. Таково общее представление о застудневании полимеров.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.