Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Модели надежности программного обеспечения






Термин модель надежности программного обеспечения, как правило, относится к математической модели, построенной для оценки зависимости надежности программного обеспечения от некоторых определенных параметров. Значения таких параметров либо предполагаются известными, либо могут быть измерены в ходе наблюдений или экспериментального исследования процесса функционирования программного обеспечения. Данный термин может быть использован также применительно к математической зависимости между определенными параметрами, которые хотя и имеют отношение к оценке надежности программного обеспечения, но тем не менее не содержат ее характеристик в явном виде.

Например, поведение некоторой ветви программы на подмножестве наборов входных данных, с помощью которых эта ветвь контролируется, существенным образом связано с надежностью программы, однако характеристики этого поведения могут быть оценены независимо от оценки самой надежности. Другим таким параметром является частота ошибок, которая позволяет оценить именно качество систем реального времени, функционирующих в непрерывном режиме, и в то же время получать только косвенную информацию относительно надежности программного обеспечения (например, в предположении экспоненциального распределения времени между отказами).

Одним из видов модели надежности программного обеспечения, которая заслуживает особого внимания, является так называемая феноменологическая, или эмпирическая, модель. При разработке моделей такого типа предполагается, что связь между надежностью и другими параметрами является статической. С помощью подобного подхода пытаются количественно оценить те характеристики программного обеспечения, которые свидетельствуют либо о высокой, либо о низкой его надежности. Так, например, параметр сложность программы характеризует степень уменьшения уровня ее надежности, поскольку усложнение программы всегда приводит к нежелательным последствиям, в том числе к неизбежным ошибкам программистов при составлении программ и трудности их обнаружения и устранения. Иначе говоря, при разработке феноменологической модели надежности программного обеспечения стремятся иметь дело с такими параметрами, соответствующее изменение значений которых должно приводить к повышению надежности программного обеспечения [8].

Рассмотрим классификацию моделей надежности ПО, приведенную на рис. 3.3. Модели надежности программного обеспечения (МНПО) подразделяются на аналитические и эмпирические. Аналитические модели дают возможность рассчитать количественные показатели надежности, основываясь на данных о поведении программы в процессе тестирования (измеряющие и оценивающие модели). Эмпирические модели базируются на анализе структурных особенностей программ. Они рассматривают зависимость показателей надежности от числа межмодульных связей, количества циклов в модулях, отношения количества прямолинейных участковпрограммы к количеству точек ветвления и т.д. Часто эмпирические модели не дают конечных результатов показателей надежности, однако они включены в классификационную схему, так как развитие этих моделей позволяет выявлять взаимосвязь между сложностью ПО и его надежностью. Эти модели можно использовать на этапе проектирования ПО, когда осуществлена разбивка на модули и известна его структура.

 

Рис. 3.3. Классификационная схема моделей надежности ПО

 

Аналитические модели представлены двумя группами: динамические модели и статические. В динамических МНПО поведение ПО (появление отказов) рассматривается во времени. В статических моделях появление отказов не связывают со временем, а учитывают только зависимость количества ошибок от числа тестовых прогонов (по области ошибок) или зависимость количества ошибок от характеристики входных данных (по области данных).

Для использования динамических моделей необходимо иметь данные о появлении отказов во времени. Если фиксируются интервалы каждого отказа, то получается непрерывная картина появления отказов во времени (группа динамических моделей с непрерывным временем). Может фиксироваться только число отказов за произвольный интервал времени. В этом случае поведение ПО может быть представлено только в дискретных точках (группа динамических моделей с дискретным временем). Рассмотрим основные предпосылки, ограничения и математический аппарат моделей, представляющих каждую группу, выделенную по схеме.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.