Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Щелевидное соединение (нексус).






В области нексуса (длиной 0, 5 – 3 мкм) плазмолеммы сближаются на расстояние 2 нм и пронизываются многочисленными белковыми каналами (коннексонами), связывающими содержимое соседних клеток. Через эти каналы (диаметром 2 нм) могут диффундировать ионы и небольшие молекулы. Характерно для мышечных тканей.

Синапсы - это области передачи сигнала от одной возбудимой клетки другой. В синапсе различают пресинаптическую мембрану (принадлежащую одной клетке), синаптическующель и постсинаптическую мембрану (ПоМ) (часть плазмолеммы другой клетки). Обычно сигнал передаётся химическим веществом - медиатором, воздействующим на специфические рецепторы в ПоМ. Характерны для нервной ткани.

Мембранных органеллы:

Эндоплазматическая сеть (ЭПС) - впервые в эндоплазме фибробласта обнаружил Портер, делится на два типа - гранулярную и агранулярную (или гладкую).

Гранулярная ЭПС представляет собой совокупность плоских мешков (цистерн), вакуолей и трубочек, со стороны гиалоплазмы мембранная сеть покрыта рибосомами. В связи с этим, иногда используют другой термин - шероховатый ретикулум. На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

Функции гранулярной ЭПС:

1) синтез на рибосомах пептидных цепей экспортируемых, мембранных, лизосомных и т.п. белков,

2) изоляция этих белков от гиалоплазмы внутри мембранных полостей и концентрирование их здесь,

3) химическая модификация этих белков, а также связывание их с УВ или др. компонентами

4) их транспорт (внутри ЭПС и с помощью отдельных пузырьков).

Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков.

Гладкая ЭПС в отличие от гранулярной лишена рибосом. Выполняет функции: синтез углеводов, липидов, стероидных гормонов (поэтому она хорошо выражена в клетках синтезирующих эти гормоны н-р, в коре надпочечников, гонад); дезинтоксикация ядовитых веществ (хорошо выражена в клетках печени, особенно после отравлений), депонирование ионов кальция в цистернах (в скелетной и сердечной мышечной ткани, после высвобождения стимулируют сокращение) и транспорт синтезированных веществ.

Комплекс Гольджи ( впервые эту органеллу обнаружил Камилло Гольджи в 1898 г в виде зачерненной серебром сети ) - это скопление 5-10 лежащих друг на друге плоских мембранных цистерн, от которых отшнуровываются мелкие пузырьки. Каждое такое скопление называется диктиосомой. В клетке может быть много диктиосом, соединённых с ЭПС и друг с другом цистернами и трубочками. По положению и функции, в диктиосомах различают 2 части: проксимальная (cis-) часть обращена к ЭПС, противоположная часть называется дистальной (trans-). При этом к проксимальной части мигрируют пузырьки от гранулярной ЭПС, обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к дистальной и, наконец, от дистальной части отпочковываются секреторные пузырьки и первичные лизосомы.

Функции комплекса Гольджи:

1) сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,

2) продолжение химической модификации этих белков, н-р связывание с УВ.

3) сортировка данных белков на лизосомальные, мембранные и экспортные,

включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).

Лизосомы (Дедюв в 1949 г.) - это мембранные пузырьки, содержащие ферменты гидролиза биополимеров, они образуются, отпочковываясь от цистерн комплекса Гольджи. Размеры - 0, 2-0, 5 мкм. Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются как отдельные макромолекулы (белки, полисахориды и т.д.),
так и целые структуры - органеллы, микробные частицы и пр.

Различают 3 типа лизосом, которые представлены на электронограмме.

Первичные лизосомы - данные лизосомы имеют гомогенное содержимое.

Очевидно, это вновь образованные лизосомы с исходным раствором ферментов (около 50 различных гидролитических ферментов). Маркерный фермент - кислая фосфатаза.

Вторичные лизосомы образуются либо путём слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями,
либо путём захвата собственных макромолекул и органелл клетки. Поэтому вторичные лизосомы обычно больше по размеру первичных,
а их содержимое часто является неоднородным: например, в нём обнаруживаются плотные тельца. При наличии таковых говорят о фаголизосомах (гетерофагосомах) или аутофагосомах (если данные тельца - фрагменты собственных органелл клетки). При различных повреждениях клетки количество аутофагосом обычно возрастает.

Телолизосомы или остаточные (резидуальные) тельца, появляются тогда,

когда внутрилизосомальное переваривание не приводит к полному разрушению захваченных структур. При этом непереваренные остатки (фрагменты макромолекул, органелл и других частиц) уплотняются,
в них часто откладывается пигмент, а сама лизосома во многом теряет свою гидролитическую активность. В неделящихся клетках накопление телолизосом становится важным фактором старения. Так, с возрастом в клетках мозга, печени и в мышечных волокнах накапливаются телолизосомы с т.н. пигментом старения - липофусцином.

Пероксисомы видимо, как и лизосомы, образуются путём отшнуровывания мембранных пузырьков от цистерн комплекса Гольджи. Обнаруживаются в большом количестве в клетках печени. Однако пероксисомы содержат иной набор ферментов. В основном, это оксидазы аминокислот. Они катализируют прямое взаимодействие субстрата с кислородом причём, последний превращается в пероксид водорода, Н2О2 - опасный для клетки окислитель.

Поэтому пероксисомы содержат и каталазу - фермент, разрушающий Н 2 О 2 до воды и кислорода. Иногда в пероксисомах обнаруживается кристаллоподобная структура (2) - нуклеоид.

Митохондрии - (в конце прошлого века Альтман избирательно окрасил их кислым фуксином) имеют две мембраны - наружную и внутреннюю - из которых вторая образует многочисленные впячивания (кристы) в матрикс митохондрии. Митохондрии отличаются от прочих органелл ещё двумя интересными особенностями. Они содержат собственную ДНК - от 1 до 50 небольших одинаковых циклических молекул. Кроме того, митохондрии содержат собственные рибосомы, которые по размеру несколько меньше цитоплазматических рибосом и видны как мелкие гранулы. б) Данная система автономного синтеза белков обеспечивает образование примерно 5 % митохондриальных белков. Остальные белки митохондрий кодируются ядром и синтезируются цитоплазматическими рибосомами.

Главная функция митохондрий - завершение окислительного распада питательных веществ и образование за счёт выделяющейся при этом энергии АТФ - временного аккумулятора энергии в клетке.

2. Наиболее известны 2 процесса. –

а) Цикл Кребса - аэробное окисление веществ, конечными продуктами которого являются СО2, выходящий из клетки и НАДН - источник электроноа переносимых дыхательной цепью.

б) Окислительное фосфорилирование - образование АТФ в ходе переноса электронов (и протонов) на кислород.

Перенос электронов производится по цепи промежуточных переносчиков (т.н. дыхательной цепи), которая вмонтирована в кристы митохондрий.
Здесь же находится и система синтеза АТФ (АТФ-синтетаза, которая сопрягает окисление и фосфорилирование АДФ до АТФ). В результате сопряжения этих процессов, энергия, освобождаемая при окислении субстратов, хранится в макроэргических связях АТФ и в дальнейшем обеспечивает выполнение многочисленных функций клеток (н-р, мышечное сокращение). При заболеваниях в митохондриях происходит разобщение окисления и фосфорилирования, в результате энергия образуется в виде тепла.

в) Другие процессы, проходящие в митохондриях: синтез мочевины,
распад жирных кислот и пирувата до ацетил-КоА.

Вариабельность структуры митохондрий. В мышечных волокнах, где потребности в энергии особенно велики, митохондрии содержат
большое количество плотно расположенных пластинчатых (ламинарных) крист. В клетках печени количество крист в митохондриях значительно меньше. Наконец, в клетках коры надпочечников кристы имеют тубулярную структуру и выглядят на срезе как мелкие везикулы.

К немембранным органеллам относят:

Рибосомы - образуются в ядрышке ядра. В 1953 г. их обнаружил Паладе, в 1974 г. ему была присуждена нобелевская премия. Рибосомы состоят из малой и большой субъединиц, имеют размеры 25х20х20 нм, включают рибосомные РНК и рибосомные белки. Функция - синтез белка. Рибосомы могут либо располагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопления - полисомы. Если в клетке хорошо развита гр. ЭПС, то она синтезирует белки на экспорт (н-р, фибробласт), если в клетке слабо развита ЭПС и много свободных рибосом и полисом, то эта клетка малодифф-я и синтезирует белки для внутреннего употребления. Области цитоплазмы богатые рибосомами и гр. ЭПС дают + р-цию на РНК при окраске по Браше (РНК окрашив-ся пиронином в розовый цвет).

Филаменты - это фибриллярные структуры клетки. Существует 3 вида филаментов: 1) микрофиламенты - это тонкие нити, образованные глобулярным белком актином (диаметром 5-7 нм) образуют в клетках более или менее густую сеть. Как видно на снимке, основное направление пучков микрофиламентов (1) - вдоль длинной оси клетки. 2) второй тип филаментов называют миозиновыми филаментами (диаметр 10-25 нм) в мышечных клетках они тесно связаны с актиновыми филаментами, образуя мифибриллу. 3) филаменты третьего типа называются промежуточными их диаметр 7-10 нм. Не принимают непосредственного участия в механизмах сокращения, а могут влиять на форму клеток (скапливаясь в тех или иных местах и, образуя опору для органелл, часто собираются в пучки, образуя фибриллы). Промежуточные филаменты имеют тканеспецифическую природу. В эпителии они образованы белком кератином, в клетках соединительной ткани - виментином, в гладких мышечных клетках - десмином, в нервных клетках (приведённых на снимке) они называются нейрофиламентами и тоже образованы особым белком. По характеру белка, можно определить из какой ткани развилась опухоль (если в опухоли обнаружен кератин, то она имеет эпителиальную природу, если виметин - соединительнотканную).

Функции филаментов - 1) образуют цитоскелет 2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивание цитолеммы при фагоцитозе 3) участвуют в амебовидном движении клеток.

Микроворсинки - производные плазмолеммы клеток длиной около 1 мкм, диаметром около 100 нм, в их основе имеются пучки микрофиламентов. Функции: 1) увеличивают поверхность клеток 2) в кишечном и почечном эпителии выполняют функцию всасывания.

Микротрубочки тоже образуют в клетке густую сеть. Сеть
начинается от перинуклеарной области (от центриоли) и
радиально распространяется к плазмолемме. В том числе микротрубочки идут вдоль длинной оси отростков клеток.

Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе - 13 таких субъединиц, образуют кольцо. В неделящейся (интерфазной) клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки, а также играют роль направительных структур при транспорте веществ. При этом транспорт веществ идёт не через микротрубочки, а по перитубулярному пространству. В делящихся же клетках сеть микротрубочек перестраивается и формирует т.н. веретено деления. Оно связывает хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Центриоли. Кроме цитоскелета, микротрубочки образуют центриоли.
Состав каждой из них отражается формулой: (9 х 3) + 0. Центриоли располагаются парой - под прямым углом друг к другу. Такая структура называется диплосомой. Вокруг диплосом - т.н. центросфера, зона более светлой цитоплазмы в ней содержатся дополнительные микротрубочки. Вместе диплосома и центросфера называются клеточным центром. В неделящейся клетке - одна пара центриолей. Образование новых центриолей (при подготовке клетки к делению) происходит путём дупликации (удвоения): каждая центриоль выступает в качестве матрицы, перпендикулярно которой формируется (путём полимеризации тубулина) новая центриоль. Поэтому, как в ДНК, в каждой диплосоме одна центриоль является родительской, а вторая - дочерней.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.