Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Идем по головам: от безголовых морских чудищ до наших головастых предков






 

Но почему мы так подробно останавливаемся на лягушках и акулах? Почему не сравниваем строение нашей головы со строением других животных, например насекомых или червей? Но стоит ли это делать, если у этих существ нет даже черепа, не говоря уже о черепно-мозговых нервах? У всех этих животных нет даже костей. Если мы отвлечемся от рыб и перейдем к червям, мы окажемся в мягком и безголовом мире. Хотя и в нем, если присмотреться внимательно, можно найти частички нас самих.

Те из нас, кто преподает сравнительную анатомию студентам младших курсов, обычно начинают первую лекцию со слайда, на котором запечатлен ланцетник. Каждый год в сентябре по всей стране, от штата Мэн до Калифорнии, на экранах в лекционных аудиториях появляются сотни изображений этого животного. Почему? Вы, наверное, помните простую схему разделения всех животных на позвоночных и беспозвоночных.

 

 

Ближайшие родственники животных, наделенных головами, — ланцетники. На рисунке показан ланцетник и реконструкция ископаемой хордовой хайкоуэллы (Haikouella), жившей около 530 миллионов лет назад. У обоих этих существ есть хорда, спинной нервный тяж и жаберные щели. Хайкоуэлла известка по трем с лишним сотням экземпляров, добытых палеонтологами на юге Китая.

 

Так вот, ланцетник, с одной стороны, беспозвоночное, что-то вроде червя, а с другой стороны, он обладает многими общими признаками с позвоночными животными, такими как рыбы, амфибии, млекопитающие. Позвоночника у ланцетника нет, но, подобно всем существам, у которых позвоночник имеется, ланцетник обладает нервным тяжем, проходящим по телу внутри спины. Кроме того, параллельно этому нервному тяжу по всему телу ланцетника проходит упругий прут. Этот прут называют хордой. Он заполнен желеобразным веществом и служит опорой для всего тела. На стадии эмбриона у каждого из нас тоже была хорда, но, в отличие от ланцетника, у нас она постепенно атрофируется, уступая место формирующемуся вокруг нее позвоночнику. Остатки хорды при этом входят в состав хрящевых дисков, разделяющих наши позвонки. При повреждении такого диска из него выходит желеобразное вещество, когда-то заключенное внутри хорды, отчего в спине возникают ужасные боли, а движение позвонков друг относительно друга оказывается затруднено. Повреждая один из этих дисков, мы травмируем очень древнюю часть нашего тела. За которую надо сказать спасибо ланцетнику.

Ланцетник — не единственное такое беспозвоночное. Много ярких примеров подобных организмов можно найти не на мелководьях современных морей, где живут ланцетники, а в древних горных породах, залегающих в Китае и в Канаде. В отложениях, образовавшихся более 500 миллионов лет назад, захоронены остатки небольших существ, у которых не было головы, черепа, головного мозга и черепно-мозговых нервов. Они выглядят неброско, напоминают кляксы на поверхности камня, но качество сохранности у этих ископаемых необычайное. Если рассматривать их под микроскопом, можно увидеть великолепные отпечатки, отражающие мелкие детали строения мягких тканей, а иногда даже рельеф кожи. На этих отпечатках можно увидеть и еще одну удивительную особенность этих существ. Эти ископаемые — древнейшие известные организмы, обладавшие хордой и спинным нервным тяжом. Они позволяют нам узнать кое-что о происхождении частей нашего собственного тела.

Но кроме того, у этих миниатюрных беспозвоночных есть и еще одно общее с нами свойство — жаберные дуги. Например, у ланцетника их больше сотни, и внутри каждой из них находится небольшой хрящевой прутик. Подобно хрящам, на основе которых формируются наши челюсти, слуховые косточки и части гортани, эти хрящи служат опорой для жаберных щелей. Истоки строения нашей головы мы находим у беспозвоночных, вовсе головы не имеющих. Зачем ланцетнику его жаберные щели? Сквозь них прокачивается вода, из которой при этом отфильтровываются мелкие частички пищи. Из этого скромного источника берут начало основные структуры нашей головы. Точно так же на протяжении многих миллионов лет менялись и меняли свои функции зубы, гены, конечности и базовая структура нашей головы.

 

 

Глава 6. Лучший план тела.

 

Тело каждого из нас представляет собой совокупность примерно двух триллионов клеток, собранных вместе строго определенным образом. Наши тела трехмерны, и все клетки и органы занимают в каждом из трех измерений некоторое отведенное им место. Наверху расположена голова. Вниз от нее идет позвоночник. Кишечник располагается в передней части живота. Руки и ноги крепятся к позвоночнику по бокам. Все эти особенности строения отличают нас от примитивно устроенных организмов, представляющих собой комки или диски из клеток.

Такого рода особенности строения не менее важны и для тел других живых существ. Подобно нам, рыбы, ящерицы и коровы тоже обладают двусторонне симметричными телами, у которых есть перед и зад, верх и низ, правая и левая сторона. Спереди (он соответствует нашему верху) у всех этих животных находится голова, которая наделена органами чувств и внутри которой расположен мозг. Вдоль спины у них тоже проходит позвоночник. Кроме того, у них, как и у нас, на одном конце туловища тоже расположен рот, а на другом — анальное отверстие.

Голова находится спереди, она смотрит в том направлении, в котором организм обычно двигается — плывет, бежит или идет. Нетрудно понять, почему для большинства условий обитания (особенно для водной среды) не подошло бы строение организма, при котором спереди находился бы не рот, а анус. Это затрудняло бы не только питание, но и взаимодействие между особями.

Сложнее отыскать основы схемы нашего строения у более примитивных животных — например, у медуз. Тела у медуз имеют иное строение: их клетки образуют лишь два слоя, наружный и внутренний, а весь организм имеет форму диска. У них есть верх и низ, но нет переда и зада, головы и хвоста, правой и левой стороны, поэтому кажется, что они устроены совсем иначе, чем мы. Не стоит и пытаться сравнить план строения нашего тела с планом строения губки. Вы, конечно, можете попробовать, но результат будет принадлежать скорее области психологии, чем анатомии.

Чтобы должным образом сравнить самих себя с этими примитивными организмами, нам нужны определенные инструменты. История возникновения нашего плана строения, как и история появления наших рук и ног, во многом записана в нашем пути развития от оплодотворенной яйцеклетки до взрослого организма. В эмбрионах спрятаны ключи к решению величайших загадок жизни. Кроме того, эмбрионы всерьез расстроили мои собственные жизненные планы.

 

Общий план: сравним эмбрионы

 

Я поступил в магистратуру, собираясь изучать ископаемых млекопитающих, а через три года уже работал над диссертацией, посвященной рыбам и амфибиям. Я сбился с пути истинного, если можно так выразиться, занявшись изучением эмбрионов. В нашей лаборатории их было множество. Например, у нас развивались икринки саламандр и рыб, а также оплодотворенные куриные яйца. Я регулярно изучал их под микроскопом, отслеживая происходящие с ними изменения. Эмбрионы всех этих животных вначале напоминали небольшие беловатые группы клеток не больше трех миллиметров в длину. Наблюдать за ходом их развития было очень увлекательно. По мере роста эмбриона объем желтка, который служил для него источником пищи, в свою очередь, постепенно уменьшался. К тому времени, как желток заканчивался, организм обычно уже был достаточно велик, чтобы выйти из икринки или вылупиться из яйца.

Наблюдения за процессом развития эмбрионов сильно изменили мой образ мышления. Из такого скромного источника, как эмбрион на ранних стадиях развития, возникали удивительно сложные организмы птиц, лягушек, форелей, состоящие из триллионов клеток, организованных определенным образом. Но главное было даже не в этом. Эмбрионы рыб, амфибий и птиц были не похожи ни на что виденное мною ранее в ходе занятий биологией. Все они были устроены в общем одинаково. У всех была голова с жаберными дугами. Внутри головы из трех небольших вздутий у всех развивался головной мозг. У всех были маленькие зачатки конечностей. Собственно, именно конечностям и была посвящена моя диссертация, над которой я работал в течение последующих трех лет. Сравнивая развитие скелета у птиц, саламандр, лягушек и черепах, я убедился, что даже такие разные конечности, как птичьи крылья и лягушачьи лапки, на ранних стадиях развития устроены очень похоже. Глядя на все эмбрионы всех этих животных, я видел глубокое сходство их строения. Взрослые организмы выглядели по-разному, но истоки у них у всех были принципиально сходны. Если рассматривать эмбрионы, то кажется, что все различия млекопитающих, птиц, амфибий и рыб едва ли не бледнеют в сравнении с фундаментальным сходством всех этих существ. В то время я познакомился с открытиями Карла Эрнста фон Бэра.

В XIX веке было несколько естествоиспытателей, изучавших эмбрионы в поисках общего плана всего живого. Самым выдающимся из них был Карл фон Бэр. Он родился в знатной дворянской семье и поначалу учился на врача. Его преподаватели предложили ему изучить ход развития цыпленка, чтобы попытаться разобраться в том, как формируются внутри яйца его органы.

К сожалению, Бэр не мог себе позволить завести инкубатор. Не было у него и возможности исследовать множество яиц. Начало поэтому не сулило особых успехов. К счастью, у него был влиятельный друг, Христиан Пандер, располагавший средствами на проведение подобных экспериментов. Изучая куриные эмбрионы, Пандер и Бэр открыли одно фундаментальное правило: каждый орган цыпленка развивается из одного из трех слоев тканей эмбриона одной из ранних стадий. Эти три слоя получили название зародышевых листков. Это было поистине легендарное открытие, сохраняющее свое значение и по сей день.

Открытие этих трех слоев позволило Бэру задаться другими важными вопросами. У всех ли животных развитие идет по той же схеме? Развиваются ли из таких слоев сердца, легкие и мышцы и у других животных? И, что особенно важно, одинаковые ли слои дают начало одним и тем же органам разных видов?

Бэр сравнил три зародышевых листка эмбрионов пандеровских цыплят со строением ранних стадий развития всевозможных других животных, эмбрионы которых ему удалось раздобыть: рыб, рептилий, млекопитающих. Оказалось, что у всех этих животных каждый орган тоже развивался из тканей одного из трех зародышевых листков. Кроме того, из каждого зародышевого листка у разных видов формировались одни и те же органы. Например, сердца всех животных развивались из среднего зародышевого листка. Из другого, наружного листка у всех животных развивался мозг. Какими бы разными ни были взрослые представители тех или иных видов, будучи эмбрионами, они все проходили одни и те же стадии развития.

Чтобы вполне оценить важность этого открытия, нужно вновь обратиться к первым трем неделям развития наших собственных эмбрионов. В момент оплодотворения в яйцеклетке происходят существенные изменения: генетический материал сперматозоида сливается с генетическим материалом яйцеклетки, и яйцеклетка начинает делиться. Вскоре те клетки, на которые она разделилась, образуют полую сферу. У человека за первые пять дней после зачатия клетки делятся четыре раза и образуют сферу из шестнадцати клеток. Эта сфера, которую называют бластоцистой, напоминает шарик, заполненный водой. Тонкая оболочка из клеток окружает жидкость, заключенную внутри. На стадии бластоцисты у эмбриона по-прежнему не видно никакого плана строения: у него еще нет ни переда, ни зада и определенно нет разных органов и тканей. Примерно на шестой день после зачатия эта сфера из клеток прикрепляется к стенке материнской матки и начинает срастаться с ней, чтобы в конечном итоге совместить кровоток эмбриона с кровотоком матери. На шестой день развития эмбриона план строения его тела по-прежнему незаметен. Этой сфере из клеток еще очень далеко до организма, в котором можно было бы узнать млекопитающее, рептилию или рыбу — или тем более человека.

Если повезет, бластоциста прирастает к стенке материнской матки. Если она прирастает не внутри полости матки, а в каком-нибудь неправильном месте (такое явление называют внематочной беременностью), последствия могут оказаться плачевными. Около 96% случаев внематочной беременности приходится на прирастание эмбриона к стенкам маточных труб (они же фаллопиевы трубы) недалеко от того места, где произошло оплодотворение. Это может происходить от того, что слизистые выделения перекрывают выход из фаллопиевой трубы в матку, из-за чего бластоциста и прирастает к стенке трубы. Если внематочную беременность не диагностировать вовремя, она может привести к разрывам тканей и внутренним кровотечениям. В очень редких случаях бластоциста может даже выходить из маточной трубы в брюшную полость, то есть в пространство между кишечником и стенкой живота. В еще более редких случаях такие бластоцисты прирастают к выстилающим брюшную полость покровам матки или даже к покровам прямой кишки матери. Более того, такой зародыш может даже полностью развиться! В некоторых случаях возможно рождение таких младенцев с помощью разреза брюшной стенки, но в целом внематочная беременность очень опасна, потому что в 90 раз по сравнению с нормальной, внутриматочной, беременностью увеличивает для матери риск смерти от кровотечения.

В любом случае выглядим мы на этом этапе развития более чем невзрачно. Где-то в начале второй недели после оплодотворения бластоциста уже имплантирована, то есть приросла к стенке матки. Одна ее сторона при этом остается свободной, а другая прикрепляется к стенке матки. Представьте себе воздушный шарик, прижатый к стене. В месте соприкосновения шарика со стеной его оболочка образует плоский диск. Именно из такого диска и будет развиваться человеческий эмбрион. Наше тело полностью формируется на основе одной лишь верхней части бластоцисты — той, что прижата к стенке матки. Остальная часть бластоцисты, расположенная под диском, покрывает собой запас желтка. На этом этапе развития мы похожи на тарелку фрисби — простой двухслойный диск.

Каким образом из этой округлой тарелки возникают зародышевые листки Карла Бэра? И как из них развивается что-то похожее на человеческий организм? Вначале клетки делятся и перемещаются, в результате чего ткань эмбриона образует складки. Перемещение тканей и образование этих складок в конечном итоге приводит к тому, что мы становимся похожи на трубку со складчатым утолщением на головном конце и еще одним таким утолщением на хвостовом конце. Если бы мы разрезали эмбрион на этом этапе, мы бы увидели не одну трубку, а две: вторая расположена внутри первой. Из наружной трубки впоследствии сформируется стенка нашего тела, а из внутренней — пищеварительный тракт. Эти две трубки разделены небольшим промежутком — на его месте впоследствии разовьется полость тела. Эта принципиальная схема строения — одна трубка внутри другой — останется с нами на всю жизнь. Внутренняя трубка будет постепенно усложняться: на ней возникнет большое утолщение (желудок), а идущий за ним кишечник удлинится и причудливо изогнется. Внешняя трубка тоже изменится: из нее образуется кожа, на которой вырастут волосы, а форма поверхности в ходе развития конечностей и других частей тела станет намного более сложной. Но в своей основе этот план строения сохранится. Наши тела, может быть, и устроены сложнее, чем были в первые три недели после зачатия, но по сути по-прежнему представляют собой две трубки, одна внутри другой, и все без исключения наши органы развились из трех слоев ткани, обособившихся в течение второй недели после оплодотворения.

Названия этих трех важнейших слоев (зародышевых листков) соответствуют их положению: наружный слой называют эктодермой, внутренний — энтодермой, а средний, расположенный между ними, — мезодермой. Из эктодермы образуются наши покровы (то есть кожа) и нервная система. Из энтодермы (внутреннего слоя) развиваются органы пищеварительного тракта и связанные с ним железы.

 

 

Начальные стадии нашего развития — первые три недели после зачатия. Из одной клетки наш организм превращается в сферу из клеток а затем в две трубки, одна внутри другой.

 

Средний слой (мезодерма) формирует многочисленные ткани, расположенные между пищеварительным трактом и кожей, в том числе скелет и мускулатуру. Не только у человека, но и у лосося, курицы, лягушки, мыши все органы развиваются из эктодермы, энтодермы и мезодермы.

Изучая эмбрионы, Бэр открыл фундаментальное свойство живых существ. Для этого он выделил у развивающихся эмбрионов два типа признаков: общие для разных видов и изменчивые в зависимости от вида. Такие признаки, как устройство в виде двух трубок, одна внутри другой, являются общими для всех позвоночных животных: рыб, амфибий, рептилий, птиц и млекопитающих. Эти общие признаки проявляются в ходе развития довольно рано. В свою очередь те признаки, по которым мы отличаемся друг от друга, например увеличенный мозг человека, панцирь черепахи, перья птиц, появляются в ходе развития несколько позже.

Бэр подходил к изучению эмбрионов совсем иначе, чем работавший через несколько десятилетий после него Эрнст Геккель, сформулировавший так называемый биогенетический закон, согласно которому индивидуальное развитие (онтогенез) повторяет историческое развитие (филогенез). Бэр сравнивал только эмбрионы и отметил, что эмбрионы разных видов намного больше похожи друг на друга, чем взрослые особи тех же видов. Согласно же Геккелю, ход развития организма каждого вида во многом повторяет эволюционную историю этого вида. Соответственно, человеческий эмбрион проходит через стадии, напоминающие рыбу, рептилию и, наконец, млекопитающее. Геккель сравнивал человеческий эмбрион с взрослой рыбой или взрослой ящерицей. Различия между взглядами Бэра и Геккеля могут показаться незначительными, но это не так. Новые данные, полученные за последние сто лет, подтверждают правоту скорее Бэра, чем Геккеля. Когда Геккель сравнивал эмбрионы одного вида с взрослыми особями другого, он во многом сравнивал круглое с красным. Развитие большинства животных отчасти действительно повторяет ход их эволюции, но для того, чтобы выявить механизмы эволюционных преобразований, плодотворнее сравнивать эмбрионы одного вида с эмбрионами другого, а не эмбрионы одного с взрослыми особями другого. Эмбрионы разных видов отнюдь не во всем одинаковы, но между ними есть черты глубокого сходства. У эмбрионов всех позвоночных имеются жаберные дуги и хорда, и все они на определенном этапе развития оказываются устроены как две трубки, одна внутри другой.

 

 

Через четыре недели после оплодотворения мы представляем собой две трубки, одна внутри другой, и состоим из трех зародышевых листков, из которых разовьются все наши органы.

 

И, что особенно важно, даже эмбрионы таких разных организмов, как рыбы и люди, обладают одними и теми же тремя зародышевыми листками, открытыми Пандером и Бэром.

Результаты подобных сравнений подталкивают нас к новым фундаментальным вопросам. Как получается, что эмбрион " знает", где нужно сформировать голову, а где анус? Какие механизмы управляют развитием и позволяют клеткам и тканям эмбриона развиваться в сложное многоклеточное тело?

Чтобы ответить на эти вопросы, нам нужен совершенно новый подход. Вместо того чтобы просто сравнивать эмбрионы, как делали во времена Бэра, мы должны применить новый способ их изучения. Научные достижения второй половины XIX века подготовили почву для периода, который мы обсуждали в третьей главе, когда эмбрионы резали на части, прививали кусочки их тканей на новые места, расчленяли им конечности и воздействовали на них всевозможными химическими соединениями. Все во имя науки.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.